Journal of International Oncology ›› 2021, Vol. 48 ›› Issue (7): 424-428.doi: 10.3760/cma.j.cn371439-20201216-00081
• Reviews • Previous Articles Next Articles
Zhou Dengjing1, Yao Yi1,2(), Song Qibin1,2(), Wu Bin1, Xiao Mengxia1, Yang Siqi1
Received:
2020-12-16
Revised:
2021-01-10
Online:
2021-07-08
Published:
2021-07-26
Contact:
Yao Yi,Song Qibin
E-mail:yaoyi2018@whu.edu.cn;qibinsong@163.com
Supported by:
Zhou Dengjing, Yao Yi, Song Qibin, Wu Bin, Xiao Mengxia, Yang Siqi. Effect of tumor cells on tumor microenvironment[J]. Journal of International Oncology, 2021, 48(7): 424-428.
[1] |
Binnewies M, Roberts EW, Kersten K, et al. Understanding the tumor immune microenvironment (TIME) for effective therapy[J]. Nat Med, 2018, 24(5):541-550. DOI: 10.1038/s41591-018-0014-x.
doi: 10.1038/s41591-018-0014-x pmid: 29686425 |
[2] |
Strong AL, Pei DT, Hurst CG, et al. Obesity enhances the conversion of adipose-derived stromal/stem cells into carcinoma-associated fibroblast leading to cancer cell proliferation and progression to an invasive phenotype[J]. Stem Cells Int, 2017, 2017:9216502. DOI: 10.1155/2017/9216502.
doi: 10.1155/2017/9216502 pmid: 29527228 |
[3] | 董熠, 姚颐, 宋启斌, 等. 癌相关成纤维细胞的分化来源[J]. 国际肿瘤学杂志, 2017, 44(2):125-128. DOI: 10.3760/cma.j.issn.1673-422X.2017.02.012. |
[4] |
Wang L, Cao L, Wang H, et al. Cancer-associated fibroblasts enhance metastatic potential of lung cancer cells through IL-6/STAT3 signaling pathway[J]. Oncotarget, 2017, 8(44):76116-76128. DOI: 10.18632/oncotarget.18814.
doi: 10.18632/oncotarget.v8i44 |
[5] |
Hardy SD, Shinde A, Wang WH, et al. Regulation of epithelial-mesenchymal transition and metastasis by TGF-β, P-bodies, and autophagy[J]. Oncotarget, 2017, 8(61):103302-103314. DOI: 10.18632/oncotarget.21871.
doi: 10.18632/oncotarget.v8i61 |
[6] |
Zhou P, Li B, Liu F, et al. The epithelial to mesenchymal transition (EMT) and cancer stem cells: implication for treatment resistance in pancreatic cancer[J]. Mol Cancer, 2017, 16(1):52. DOI: 10.1186/s12943-017-0624-9.
doi: 10.1186/s12943-017-0624-9 |
[7] |
Cazet AS, Hui MN, Elsworth BL, et al. Targeting stromal remodeling and cancer stem cell plasticity overcomes chemoresistance in triple negative breast cancer[J]. Nat Commun, 2018, 9(1):2897. DOI: 10.1038/s41467-018-05220-6.
doi: 10.1038/s41467-018-05220-6 |
[8] |
Öhlund D, Handly-Santana A, Biffi G, et al. Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer[J]. J Exp Med, 2017, 214(3):579-596. DOI: 10.1084/jem.20162024.
doi: 10.1084/jem.20162024 |
[9] |
Ringuette GC, Bernard G, Tremblay S, et al. Exosomes induce fibroblast differentiation into cancer-associated fibroblasts through TGFβ signaling[J]. Mol Cancer Res, 2018, 16(7):1196-1204. DOI: 10.1158/1541-7786.MCR-17-0784.
doi: 10.1158/1541-7786.MCR-17-0784 |
[10] |
Clocchiatti A, Ghosh S, Procopio MG, et al. Androgen receptor functions as transcriptional repressor of cancer-associated fibroblast activation[J]. J Clin Invest, 2018, 128(12):5531-5548. DOI: 10.1172/JCI99159.
doi: 10.1172/JCI99159 |
[11] |
Cho C, Mukherjee R, Peck AR, et al. Cancer-associated fibroblasts downregulate type Ⅰ interferon receptor to stimulate intratumoral stromagenesis[J]. Oncogene, 2020, 39(38):6129-6137. DOI: 10.1038/s41388-020-01424-7.
doi: 10.1038/s41388-020-01424-7 |
[12] |
Kuo MC, Kuo PC, Mi Z. Myeloid zinc finger-1 regulates expression of cancer-associated fibroblast and cancer stemness profiles in breast cancer[J]. Surgery, 2019, 166(4):515-523. DOI: 10.1016/j.surg.2019.05.042.
doi: 10.1016/j.surg.2019.05.042 |
[13] |
Laklai H, Miroshnikova YA, Pickup MW, et al. Genotype tunes pancreatic ductal adenocarcinoma tissue tension to induce matricellular fibrosis and tumor progression[J]. Nat Med, 2016, 22(5):497-505. DOI: 10.1038/nm.4082.
doi: 10.1038/nm.4082 |
[14] |
Xue J, Yu X, Xue L, et al. Intrinsic β-catenin signaling suppresses CD8+ T-cell infiltration in colorectal cancer[J]. Biomed Pharmacother, 2019, 115:108921. DOI: 10.1016/j.biopha.2019.108921.
doi: 10.1016/j.biopha.2019.108921 |
[15] |
Pistillo MP, Fontana V, Morabito A, et al. Soluble CTLA-4 as a favorable predictive biomarker in metastatic melanoma patients treated with ipilimumab: an Italian melanoma intergroup study[J]. Cancer Immunol Immunother, 2019, 68(1):97-107. DOI: 10.1007/s00262-018-2258-1.
doi: 10.1007/s00262-018-2258-1 |
[16] |
Reck M, Rodríguez-Abreu D, Robinson AG, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer[J]. N Engl J Med, 2016, 375(19):1823-1833. DOI: 10.1056/NEJMoa1606774.
doi: 10.1056/NEJMoa1606774 |
[17] |
Whelan S, Ophir E, Kotturi MF, et al. PVRIG and PVRL2 are induced in cancer and inhibit CD8+ T-cell function[J]. Cancer Immunol Res, 2019, 7(2):257-268. DOI: 10.1158/2326-6066.CIR-18-0442.
doi: 10.1158/2326-6066.CIR-18-0442 |
[18] |
Duan S, Guo W, Xu Z, et al. Natural killer group 2D receptor and its ligands in cancer immune escape[J]. Mol Cancer, 2019, 18(1):29. DOI: 10.1186/s12943-019-0956-8.
doi: 10.1186/s12943-019-0956-8 |
[19] |
Zhang J, Larrocha PS, Zhang B, et al. Antibody targeting tumor-derived soluble NKG2D ligand sMIC provides dual co-stimulation of CD8 T cells and enables sMIC+ tumors respond to PD1/PD-L1 blockade therapy[J]. J Immunother Cancer, 2019, 7(1):223. DOI: 10.1186/s40425-019-0693-y.
doi: 10.1186/s40425-019-0693-y |
[20] |
Li R, Li H, Sun Q, et al. Indoleamine 2,3-dioxygenase regulates T cell activity through Vav1/Rac pathway[J]. Mol Immunol, 2017, 81:102-107. DOI: 10.1016/j.molimm.2016.11.018.
doi: 10.1016/j.molimm.2016.11.018 |
[21] |
Ehrlich AK, Pennington JM, Tilton S, et al. AhR activation increases IL-2 production by alloreactive CD4+ T cells initiating the differentiation of mucosal-homing Tim3+ Lag3+ Tr1 cells[J]. Eur J Immunol, 2017, 47(11):1989-2001. DOI: 10.1002/eji.201747121.
doi: 10.1002/eji.201747121 |
[22] |
Ham S, Lima LG, Lek E, et al. The impact of the cancer microenvironment on macrophage phenotypes[J]. Front Immunol, 2020, 11:1308. DOI: 10.3389/fimmu.2020.01308.
doi: 10.3389/fimmu.2020.01308 |
[23] |
Quero L, Hanser E, Manigold T, et al. TLR2 stimulation impairs anti-inflammatory activity of M2-like macrophages, generating a chimeric M1/M2 phenotype[J]. Arthritis Res Ther, 2017, 19(1):245. DOI: 10.1186/s13075-017-1447-1.
doi: 10.1186/s13075-017-1447-1 |
[24] |
Makita N, Hizukuri Y, Yamashiro K, et al. IL-10 enhances the phenotype of M2 macrophages induced by IL-4 and confers the ability to increase eosinophil migration[J]. Int Immunol, 2015, 27(3):131-141. DOI: 10.1093/intimm/dxu090.
doi: 10.1093/intimm/dxu090 |
[25] |
Lavender N, Yang J, Chen SC, et al. The Yin/Yan of CCL2: a minor role in neutrophil anti-tumor activity in vitro but a major role on the outgrowth of metastatic breast cancer lesions in the lung in vivo[J]. BMC Cancer, 2017, 17(1):88. DOI: 10.1186/s12885-017-3074-2.
doi: 10.1186/s12885-017-3074-2 pmid: 28143493 |
[26] |
Kitamura T, Qian BZ, Soong D, et al. CCL2-induced chemokine cascade promotes breast cancer metastasis by enhancing retention of metastasis-associated macrophages[J]. J Exp Med, 2015, 212(7):1043-1059. DOI: 10.1084/jem.20141836.
doi: 10.1084/jem.20141836 |
[27] |
Wang Q, He Z, Huang M, et al. Vascular niche IL-6 induces alternative macrophage activation in glioblastoma through HIF-2ɑ[J]. Nat Commun, 2018, 9(1):559. DOI: 10.1038/s41467-018-03050-0.
doi: 10.1038/s41467-018-03050-0 |
[28] |
Pirro M, Schoof E, van Vliet SJ, et al. Glycoproteomic analysis of MGL-binding proteins on acute T-cell leukemia cells[J]. J Proteome Res, 2019, 18(3):1125-1132. DOI: 10.1021/acs.jproteome.8b00796.
doi: 10.1021/acs.jproteome.8b00796 |
[29] |
Swierczak A, Mouchemore KA, Hamilton JA, et al. Neutrophils: important contributors to tumor progression and metastasis[J]. Cancer Metastasis Rev, 2015, 34(4):735-751. DOI: 10.1007/s10555-015-9594-9.
doi: 10.1007/s10555-015-9594-9 |
[30] |
Shaul ME, Levy L, Sun J, et al. Tumor-associated neutrophils display a distinct N1 profile following TGFβ modulation: a transcriptomics analysis of pro- vs. antitumor TANs[J]. Oncoimmunology, 2016, 5(11):e1232221. DOI: 10.1080/2162402X.2016.1232221.
doi: 10.1080/2162402X.2016.1232221 |
[31] |
Andzinski L, Kasnitz N, Stahnke S, et al. Type Ⅰ IFNs induce anti-tumor polarization of tumor associated neutrophils in mice and human[J]. Int J Cancer, 2016, 138(8):1982-1993. DOI: 10.1002/ijc.29945.
doi: 10.1002/ijc.29945 pmid: 26619320 |
[32] |
Meyer MA, Baer JM, Knolhoff BL, et al. Breast and pancreatic cancer interrupt IRF8-dependent dendritic cell development to overcome immune surveillance[J]. Nat Commun, 2018, 9(1):1250. DOI: 10.1038/s41467-018-03600-6.
doi: 10.1038/s41467-018-03600-6 |
[33] |
Martinek J, Wu TC, Cadena D, et al. Interplay between dendritic cells and cancer cells[J]. Int Rev Cell Mol Biol, 2019, 348:179-215. DOI: 10.1016/bs.ircmb.2019.07.008.
doi: S1937-6448(19)30071-1 pmid: 31810553 |
[34] |
Gringhuis SI, Kaptein TM, Wevers BA, et al. Fucose-based PAMPs prime dendritic cells for follicular T helper cell polarization via DC-SIGN-dependent IL-27 production[J]. Nat Commun, 2014, 5:5074. DOI: 10.1038/ncomms6074.
doi: 10.1038/ncomms6074 pmid: 25278262 |
[35] | Karaman S, Leppanen VM, Alitalo K. Vascular endothelial growth factor signaling in development and disease[J]. Development, 2018, 145(14): dev151019. DOI: 10.1242/dev.151019. |
[36] |
Huang C, Chen Y. Lymphangiogenesis and colorectal cancer[J]. Saudi Med J, 2017, 38(3):237-244. DOI: 10.15537/smj.2017.3.16245.
doi: 10.15537/smj.2017.3.16245 |
[37] |
Zhao Y, Adjei AA. Targeting angiogenesis in cancer therapy: moving beyond vascular endothelial growth factor[J]. Oncologist, 2015, 20(6):660-673. DOI: 10.1634/theoncologist.2014-0465.
doi: 10.1634/theoncologist.2014-0465 |
[38] |
Heinolainen K, Karaman S, D'Amico G, et al. VEGFR3 modulates vascular permeability by controlling VEGF/VEGFR2 signaling[J]. Circ Res, 2017, 120(9):1414-1425. DOI: 10.1161/CIRCRESAHA.116.310477.
doi: 10.1161/CIRCRESAHA.116.310477 |
[39] |
Liu Y, Li T, Hu D, et al. NOK/STYK1 promotes the genesis and remodeling of blood and lymphatic vessels during tumor progression[J]. Biochem Biophys Res Commun, 2016, 478(1):254-259. DOI: 10.1016/j.bbrc.2016.07.059.
doi: 10.1016/j.bbrc.2016.07.059 |
[40] |
Dobbs JL, Shin D, Krishnamurthy S, et al. Confocal fluorescence microscopy to evaluate changes in adipocytes in the tumor microenvironment associated with invasive ductal carcinoma and ductal carcinoma in situ[J]. Int J Cancer, 2016, 139(5):1140-1149. DOI: 10.1002/ijc.30160.
doi: 10.1002/ijc.30160 |
[41] |
Zhang M, Di Martino JS, Bowman RL, et al. Adipocyte-derived lipids mediate melanoma progression via FATP proteins[J]. Cancer Discov, 2018, 8(8):1006-1025. DOI: 10.1158/2159-8290.CD-17-1371.
doi: 10.1158/2159-8290.CD-17-1371 |
[42] |
Sakurai M, Miki Y, Takagi K, et al. Interaction with adipocyte stromal cells induces breast cancer malignancy via S100A7 upregulation in breast cancer microenvironment[J]. Breast Cancer Res, 2017, 19(1):70. DOI: 10.1186/s13058-017-0863-0.
doi: 10.1186/s13058-017-0863-0 pmid: 28629450 |
[43] |
Wei X, Li S, He J, et al. Tumor-secreted PAI-1 promotes breast cancer metastasis via the induction of adipocyte-derived collagen remodeling[J]. Cell Commun Signal, 2019, 17(1):58. DOI: 10.1186/s12964-019-0373-z.
doi: 10.1186/s12964-019-0373-z |
[1] | Fu Yi, Ma Chenying, Zhang Lu, Zhou Juying. Research progress of habitat analysis in radiomics of malignant tumors [J]. Journal of International Oncology, 2024, 51(5): 292-297. |
[2] | Yang Zhi, Lu Yiqiao, Gu Huayan, Ding Jialing, Guo Guilong. Research progress of tumor microenvironment mediated drug resistance in targeted therapy of breast cancer [J]. Journal of International Oncology, 2024, 51(4): 235-238. |
[3] | Liu Bohan, Huang Junxing. Research progress of liquid biopsy technology in esophageal squamous cell carcinoma [J]. Journal of International Oncology, 2024, 51(2): 105-108. |
[4] | Liu Xiaodi, Su Jianfei, Zhang Jingxian, Wei Xueqin, Jia Yingjie. Research progress of myeloid-derived suppressor cells in tumor angiogenesis [J]. Journal of International Oncology, 2024, 51(1): 50-54. |
[5] | Gu Huayan, Zhu Teng, Guo Guilong. Breast microbiota and breast cancer: present and future [J]. Journal of International Oncology, 2024, 51(1): 55-58. |
[6] | Xu Meng, Jiang Wei, Zhu Haitao, Cao Xiongfeng. Research progress of cancer-associated fibroblasts in tumor radiotherapy resistance [J]. Journal of International Oncology, 2023, 50(4): 227-230. |
[7] | Ding Hao, Ying Jintao, Fu Maoyong. Research progress of CAR-T in the treatment of esophageal squamous cell carcinoma [J]. Journal of International Oncology, 2023, 50(4): 231-235. |
[8] | Cao Mengqing, Xu Zhiyong, Shi Yuting, Wang Kai. Role of tertiary lymphoid structures in tumor immune microenvironment regulation and anti-tumor therapy [J]. Journal of International Oncology, 2023, 50(3): 169-173. |
[9] | Xu Liangfu, Li Yuanfei. Research progress on tumor microenvironment and immune combination therapy of MSS colorectal cancer [J]. Journal of International Oncology, 2023, 50(3): 186-190. |
[10] | Zhu Yi, Chen Jian. Mechanism of hydrogen sulfide in tumorigenesis and development and its donor-mediated anti-tumor effects [J]. Journal of International Oncology, 2023, 50(12): 729-733. |
[11] | Xie Lulu, Ding Jianghua. Progress of immunotherapy-based strategy in triple-negative breast cancer [J]. Journal of International Oncology, 2023, 50(11): 672-676. |
[12] | Tao Hong, Yin Hong, Luo Hong, Tao Jiayu. Potential strategies for targeting tumor-associated macrophages to enhance the efficacy of immune checkpoint inhibitors for colorectal cancer [J]. Journal of International Oncology, 2023, 50(11): 683-687. |
[13] | Ma Xueyan, Lu Lili, Sun Pengfei. Advances in the immune microenvironment in cervical cancer [J]. Journal of International Oncology, 2023, 50(1): 47-50. |
[14] | Wu Jiayu, Liu Jiacheng. Research progress of radiomics toward lung adenocarcinoma manifesting as solitary ground glass nodule [J]. Journal of International Oncology, 2022, 49(8): 449-452. |
[15] | Zhang Zishu, Wu Xinlin. Mechanism of action of lactic acid in tumor microenvironment and related treatment [J]. Journal of International Oncology, 2022, 49(6): 349-352. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||