Journal of International Oncology ›› 2023, Vol. 50 ›› Issue (12): 729-733.doi: 10.3760/cma.j.cn371439-20230605-00137
• Reviews • Previous Articles Next Articles
Received:
2023-06-05
Revised:
2023-06-28
Online:
2023-12-08
Published:
2024-01-16
Contact:
Chen Jian
E-mail:chen_jian818@163.com
Zhu Yi, Chen Jian. Mechanism of hydrogen sulfide in tumorigenesis and development and its donor-mediated anti-tumor effects[J]. Journal of International Oncology, 2023, 50(12): 729-733.
[1] |
Félétou M, Vanhoutte PM. EDHF: an update[J]. Clin Sci (Lond), 2009, 117(4): 139-155. DOI: 10.1042/CS20090096.
pmid: 19601928 |
[2] |
Szabo C. Gasotransmitters in cancer: from pathophysiology to experimental therapy[J]. Nat Rev Drug Discov, 2016, 15(3): 185-203. DOI: 10.1038/nrd.2015.1.
pmid: 26678620 |
[3] | Hellmich MR, Szabo C. Hydrogen sulfide and cancer[M]// MooreP K, WhitemanM. Chemistry, biochemistry and pharmacology of hydrogen sulfide. Cham: Springer, 2015: 233-241. DOI: 10.1007/978-3-319-18144-8_12. |
[4] | Powell CR, Dillon KM, Matson JB. A review of hydrogen sulfide (H2S) donors: chemistry and potential therapeutic applications[J]. Biochem Pharmacol, 2018, 149: 110-123. DOI: 10.1016/j.bcp.2017.11.014. |
[5] | Zaorska E, Tomasova L, Koszelewski D, et al. Hydrogen sulfide in pharmacotherapy, beyond the hydrogen sulfide-donors[J]. Biomo-lecules, 2020, 10(2): 323. DOI: 10.3390/biom10020323. |
[6] |
Zhen Y, Wu Q, Ding Y, et al. Exogenous hydrogen sulfide promotes hepatocellular carcinoma cell growth by activating the STAT3-COX-2 signaling pathway[J]. Oncol Lett, 2018, 15(5): 6562-6570. DOI: 10.3892/ol.2018.8154.
pmid: 29725404 |
[7] |
Youness RA, Gad AZ, Sanber K, et al. Targeting hydrogen sulphide signaling in breast cancer[J]. J Adv Res, 2021, 27: 177-190. DOI: 10.1016/j.jare.2020.07.006.
pmid: 33318876 |
[8] | Wahafu W, Gai J, Song L, et al. Increased H2S and its synthases in urothelial cell carcinoma of the bladder, and enhanced cisplatin-induced apoptosis following H2S inhibition in EJ cells[J]. Oncol Lett, 2018, 15(6): 8484-8490. DOI: 10.3892/ol.2018.8373. |
[9] | Xu S, Pan J, Cheng X, et al. Diallyl trisulfide, a H2S donor, inhibits cell growth of human papillary thyroid carcinoma KTC-1 cells through a positive feedback loop between H2S and cystathionine-gamma-lyase[J]. Phytother Res, 2020, 34(5): 1154-1165. DOI: 10.1002/ptr.6586. |
[10] | Lv B, Chen S, Tang C, et al. Hydrogen sulfide and vascular regulation—an update[J]. J Adv Res, 2021, 27: 85-97. DOI: 10.1016/j.jare.2020.05.007. |
[11] | Zhu C, Liu Q, Li X, et al. Hydrogen sulfide: a new therapeutic target in vascular diseases[J]. Front Endocrinol (Lausanne), 2022, 13: 934231. DOI: 10.3389/fendo.2022.934231. |
[12] | Ling K, Zhou W, Guo Y, et al. H2S attenuates oxidative stress via Nrf2/NF-κB signaling to regulate restenosis after percutaneous transluminal angioplasty[J]. Exp Biol Med (Maywood), 2021, 246(2): 226-239. DOI: 10.1177/1535370220961038. |
[13] | Li H, Wu R, Xi Y, et al. Dopamine 1 receptors inhibit apoptosis via activating CSE/H2S pathway in high glucose-induced vascular endothelial cells[J]. Cell Biol Int, 2022, 46(7): 1098-1108. DOI: 10.1002/cbin.11794. |
[14] |
Éva Sikura K, Combi Z, Potor L, et al. Hydrogen sulfide inhibits aortic valve calcification in heart via regulating RUNX2 by NF-κB, a link between inflammation and mineralization[J]. J Adv Res, 2021, 27: 165-176. DOI: 10.1016/j.jare.2020.07.005.
pmid: 33318875 |
[15] |
Behera J, Kelly KE, Tyagi N. Hydrogen sulfide prevents ethanol-induced ZO-1 CpG promoter hypermethylation-dependent vascular permeability via miR-218/DNMT3a axis[J]. J Cell Physiol, 2021, 236(10): 6852-6867. DOI: 10.1002/jcp.30382.
pmid: 33855696 |
[16] | Marwah MK, Shokr H, Sanchez-Aranguren L, et al. Transdermal delivery of a hydrogen sulphide donor, ADT-OH using aqueous gel formulations for the treatment of impaired vascular function: an ex vivo study[J]. Pharm Res, 2022, 39(2): 341-352. DOI: 10.1007/s11095-021-03164-z. |
[17] | 谢淼, 陈善稳, 王鹏远. 内源性硫化氢在胃肠道肿瘤微环境中的作用和机制研究进展[J]. 中国现代普通外科进展, 2019, 22(11): 869-872. DOI: 10.3969/j.issn.1009-9905.2019.11.008. |
[18] | Wen X, Xi Y, Zhang Y, et al. Dr1 activation promotes vascular smooth muscle cell apoptosis via up-regulation of CSE/H2S pathway in diabetic mice[J]. FASEB J, 2022, 36(1): e22070. DOI: 10.1096/fj.202101455R. |
[19] | Zhang L, Jiang X, Liu N, et al. Exogenous H2S prevents the nuclear translocation of PDC-E1 and inhibits vascular smooth muscle cell proliferation in the diabetic state[J]. J Cell Mol Med, 2021, 25(17): 8201-8214. DOI: 10.1111/jcmm.16688. |
[20] |
Shuang T, Fu M, Yang G, et al. Interaction among estrogen, IGF-1, and H2S on smooth muscle cell proliferation[J]. J Endocrinol, 2021, 248(1): 17-30. DOI: 10.1530/JOE-20-0190.
pmid: 33112794 |
[21] |
Lignelli E, Palumbo F, Bayindir SG, et al. The H2S-generating enzyme 3-mercaptopyruvate sulfurtransferase regulates pulmonary vascular smooth muscle cell migration and proliferation but does not impact normal or aberrant lung development[J]. Nitric Oxide, 2021, 107: 31-45. DOI: 10.1016/j.niox.2020.12.002.
pmid: 33338600 |
[22] |
Mustafa AK, Sikka G, Gazi SK, et al. Hydrogen sulfide as endo-thelium-derived hyperpolarizing factor sulfhydrates potassium channels[J]. Circ Res, 2011, 109(11): 1259-1268. DOI: 10.1161/CIRCRESAHA.111.240242.
pmid: 21980127 |
[23] | Kan J, Guo W, Huang C, et al. S-propargyl-cysteine, a novel water-soluble modulator of endogenous hydrogen sulfide, promotes angiogenesis through activation of signal transducer and activator of transcription 3[J]. Antioxid Redox Signal, 2014, 20(15): 2303-2316. DOI: 10.1089/ars.2013.5449. |
[24] | Chen JJY, van der Vlies AJ, Hasegawa U. Hydrogen sulfide-releasing micelles for promoting angiogenesis[J]. Polym Chem, 2020, 11: 4454-4463. DOI: 10.1039/d0py00495b. |
[25] | Qi QR, Lechuga TJ, Patel B, et al. Enhanced stromal cell CBS-H2S production promotes estrogen-stimulated human endometrial angiogenesis[J]. Endocrinology, 2020, 161(11): bqaa176. DOI: 10.1210/endocr/bqaa176. |
[26] | Guo S, Li J, Huang Z, et al. The CBS-H2S axis promotes liver metastasis of colon cancer by upregulating VEGF through AP-1 activation[J]. Br J Cancer, 2022, 126(7): 1055-1066. DOI: 10.1038/s41416-021-01681-7. |
[27] | Wang D, Yang H, Zhang Y, et al. Inhibition of cystathionine β- synthase promotes apoptosis and reduces cell proliferation in chronic myeloid leukemia[J]. Signal Transduct Target Ther, 2021, 6(1): 52. DOI: 10.1038/s41392-020-00410-5. |
[28] | Wu D, Li J, Zhang Q, et al. Exogenous hydrogen sulfide regulates the growth of human thyroid carcinoma cells[J]. Oxid Med Cell Longev, 2019, 2019: 6927298. DOI: 10.1155/2019/6927298. |
[29] | Wang M, Yan J, Cao X, et al. Hydrogen sulfide modulates epithelial-mesenchymal transition and angiogenesis in non-small cell lung cancer via HIF-1α activation[J]. Biochem Pharmacol, 2020, 172: 113775. DOI: 10.1016/j.bcp.2019.113775. |
[30] | Abdollahi Govar A, Törő G, Szaniszlo P, et al. 3-Mercaptopyruvate sulfurtransferase supports endothelial cell angiogenesis and bioenergetics[J]. Br J Pharmacol, 2020, 177(4): 866-883. DOI: 10.1111/bph.14574. |
[31] | Jiang X, MacArthur MR, Treviño-Villarreal JH, et al. Intracellular H2S production is an autophagy-dependent adaptive response to DNA damage[J]. Cell Chem Biol, 2021, 28(12): 1669-1678.e5. DOI: 10.1016/j.chembiol.2021.05.016. |
[32] | Ci L, Yang X, Gu X, et al. Cystathionine γ-lyase deficiency exa-cerbates CCl4-induced acute hepatitis and fibrosis in the mouse liver[J]. Antioxid Redox Signal, 2017, 27(3): 133-149. DOI: 10.1089/ars.2016.6773. |
[33] | Aroca A, Yruela I, Gotor C, et al. Persulfidation of ATG18a regulates autophagy under ER stress in Arabidopsis[J]. Proc Natl Acad Sci U S A, 2021, 118(20): e2023604118. DOI: 10.1073/pnas.2023604118. |
[34] | Li N, Wang J, Zang X, et al. H2S probe CPC inhibits autophagy and promotes apoptosis by inhibiting glutathionylation of Keap1 at Cys434[J]. Apoptosis, 2021, 26(1/2): 111-131. DOI: 10.1007/s10495-020-01652-y. |
[35] |
Youness RA, Assal RA, Abdel Motaal A, et al. A novel role of sONE/NOS3/NO signaling cascade in mediating hydrogen sulphide bilateral effects on triple negative breast cancer progression[J]. Nitric Oxide, 2018, 80: 12-23. DOI: 10.1016/j.niox.2018.07.004.
pmid: 30081213 |
[36] | Ma Y, Wang S, Wu Y, et al. Hepatic stellate cell mediates transcription of TNFSF14 in hepatocellular carcinoma cells via H2S/CSE-JNK/JunB signaling pathway[J]. Cell Death Dis, 2022, 13(3): 238. DOI: 10.1038/s41419-022-04678-z. |
[37] | Kuschman HP, Palczewski MB, Thomas DD. Nitric oxide and hydrogen sulfide: sibling rivalry in the family of epigenetic regulators[J]. Free Radic Biol Med, 2021, 170: 34-43. DOI: 10.1016/j.freeradbiomed.2021.01.010. |
[38] | Jiang W, Liu C, Deng M, et al. H2S promotes developmental brain angiogenesis via the NOS/NO pathway in zebrafish[J]. Stroke Vasc Neurol, 2021, 6(2): 244-251. DOI: 10.1136/svn-2020-000584. |
[39] |
Ngowi EE, Afzal A, Sarfraz M, et al. Role of hydrogen sulfide donors in cancer development and progression[J]. Int J Biol Sci, 2021, 17(1): 73-88. DOI: 10.7150/ijbs.47850.
pmid: 33390834 |
[40] | Whiteman M, Li L, Rose P, et al. The effect of hydrogen sulfide donors on lipopolysaccharide-induced formation of inflammatory mediators in macrophages[J]. Antioxid Redox Signal, 2010, 12(10): 1147-1154. DOI: 10.1089/ars.2009.2899. |
[41] |
Dong Q, Yang B, Han JG, et al. A novel hydrogen sulfide-releasing donor, HA-ADT, suppresses the growth of human breast cancer cells through inhibiting the PI3K/AKT/mTOR and Ras/Raf/MEK/ERK signaling pathways[J]. Cancer Lett, 2019, 455: 60-72. DOI: 10.1016/j.canlet.2019.04.031.
pmid: 31042588 |
[42] | Lu S, Gao Y, Huang X, et al. GYY4137, a hydrogen sulfide (H2S) donor, shows potent anti-hepatocellular carcinoma activity through blocking the STAT3 pathway[J]. Int J Oncol, 2014, 44(4): 1259-1267. DOI: 10.3892/ijo.2014.2305. |
[43] |
Dao NV, Ercole F, Kaminskas LM, et al. Trisulfide-bearing PEG brush polymers donate hydrogen sulfide and ameliorate cellular oxidative stress[J]. Biomacromolecules, 2020, 21(12): 5292-5305. DOI: 10.1021/acs.biomac.0c01347.
pmid: 33210534 |
[44] | Kaur K, Enders P, Zhu Y, et al. Amino acid-based H2S donors: N-thiocarboxyanhydrides that release H2S with innocuous bypro-ducts[J]. Chem Commun (Camb), 2021, 57(45): 5522-5525. DOI: 10.1039/d1cc01309b. |
[45] | Han H, Wang L, Liu Y, et al. Combination of curcuma zedoary and kelp inhibits growth and metastasis of liver cancer in vivo and in vitro via reducing endogenous H2S levels[J]. Food Funct, 2019, 10(1): 224-234. DOI: 10.1039/c8fo01594e. |
[1] | Liu Na, Kou Jieli, Yang Feng, Liu Taotao, Li Danping, Han Junrui, Yang Lizhou. Clinical value of serum miR-106b-5p and miR-760 combined with low-dose spiral CT in the diagnosis of early lung cancer [J]. Journal of International Oncology, 2024, 51(6): 321-325. |
[2] | Yang Mi, Bie Jun, Zhang Jiayong, Deng Jiaxiu, Tang Zuge, Lu Jun. Analysis of the efficacy and prognosis of neoadjuvant therapy for locally advanced resectable esophageal cancer [J]. Journal of International Oncology, 2024, 51(6): 332-337. |
[3] | Yuan Jian, Huang Yanhua. Diagnostic value of Hp-IgG antibody combined with serum DKK1 and sB7-H3 in early gastric cancer [J]. Journal of International Oncology, 2024, 51(6): 338-343. |
[4] | Chen Hongjian, Zhang Suqing. Study on the relationship between serum miR-24-3p, H2AFX and clinical pathological features and postoperative recurrence in liver cancer patients [J]. Journal of International Oncology, 2024, 51(6): 344-349. |
[5] | Guo Zehao, Zhang Junwang. Role of PFDN and its subunits in tumorigenesis and tumor development [J]. Journal of International Oncology, 2024, 51(6): 350-353. |
[6] | Zhang Baihong, Yue Hongyun. Advances in anti-tumor drugs with new mechanisms of action [J]. Journal of International Oncology, 2024, 51(6): 354-358. |
[7] | Xu Fenglin, Wu Gang. Research progress of EBV in tumor immune microenvironment and immunotherapy of nasopharyngeal carcinoma [J]. Journal of International Oncology, 2024, 51(6): 359-363. |
[8] | Wang Ying, Liu Nan, Guo Bing. Advances of antibody-drug conjugate in the therapy of metastatic breast cancer [J]. Journal of International Oncology, 2024, 51(6): 364-369. |
[9] | Zhang Rui, Chu Yanliu. Research progress of colorectal cancer risk assessment models based on FIT and gut microbiota [J]. Journal of International Oncology, 2024, 51(6): 370-375. |
[10] | Gao Fan, Wang Ping, Du Chao, Chu Yanliu. Research progress on intestinal flora and non-surgical treatment of the colorectal cancer [J]. Journal of International Oncology, 2024, 51(6): 376-381. |
[11] | Liu Jing, Liu Qin, Huang Mei. Prognostic model construction of lung infection in patients with chemoradiotherapy for esophageal cancer based on SMOTE algorithm [J]. Journal of International Oncology, 2024, 51(5): 267-273. |
[12] | Yang Lin, Lu Ning, Wen Hua, Zhang Mingxin, Zhu Lin. Study on the clinical relationship between inflammatory burden index and gastric cancer [J]. Journal of International Oncology, 2024, 51(5): 274-279. |
[13] | Wang Junyi, Hong Kaibin, Ji Rongjia, Chen Dachao. Effect of cancer nodules on liver metastases after radical resection of colorectal cancer [J]. Journal of International Oncology, 2024, 51(5): 280-285. |
[14] | Zhang Ningning, Yang Zhe, Tan Limei, Li Zhenning, Wang Di, Wei Yongzhi. Diagnostic value of cervical cell DNA ploidy analysis combined with B7-H4 and PKCδ for cervical cancer [J]. Journal of International Oncology, 2024, 51(5): 286-291. |
[15] | Fu Yi, Ma Chenying, Zhang Lu, Zhou Juying. Research progress of habitat analysis in radiomics of malignant tumors [J]. Journal of International Oncology, 2024, 51(5): 292-297. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||