Journal of International Oncology ›› 2023, Vol. 50 ›› Issue (12): 734-738.doi: 10.3760/cma.j.cn371439-20230606-00138
• Reviews • Previous Articles Next Articles
Yue Hongyun1, Zhang Baihong2()
Received:
2023-06-06
Revised:
2023-07-26
Online:
2023-12-08
Published:
2024-01-16
Contact:
Zhang Baihong
E-mail:bhzhang1999@126.com
Supported by:
Yue Hongyun, Zhang Baihong. Senotherapies in cancers[J]. Journal of International Oncology, 2023, 50(12): 734-738.
[1] |
Hanahan D. Hallmarks of cancer: new dimensions[J]. Cancer Discov, 2022, 12(1): 31-46. DOI: 10.1158/2159-8290.CD-21-1059.
pmid: 35022204 |
[2] | Di Micco R, Krizhanovsky V, Baker D, et al. Cellular senescence in ageing: from mechanisms to therapeutic opportunities[J]. Nat Rev Mol Cell Biol, 2021, 22(2): 75-95. DOI: 10.1038/s41580-020-00314-w. |
[3] |
He S, Sharpless NE. Senescence in health and disease[J]. Cell, 2017, 169(6): 1000-1011. DOI: 10.1016/j.cell.2017.05.015.
pmid: 28575665 |
[4] | Schmitt CA, Wang B, Demaria M. Senescence and cancer-role and therapeutic opportunities[J]. Nat Rev Clin Oncol, 2022, 19(10): 619-636. DOI: 10.1038/s41571-022-00668-4. |
[5] | Chen Z, Trotman LC, Shaffer D, et al. Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorige-nesis[J]. Nature, 2005, 436(7051): 725-730. DOI: 10.1038/nature03918. |
[6] | Michaloglou C, Vredeveld LC, Soengas MS, et al. BRAFE600-associated senescence-like cell cycle arrest of human naevi[J]. Nature, 2005, 436(7051): 720-724. DOI: 10.1038/nature03890. |
[7] |
Lerma Clavero A, Boqvist PL, Ingelshed K, et al. MDM2 inhibitors, nutlin-3a and navtemadelin, retain efficacy in human and mouse cancer cells cultured in hypoxia[J]. Sci Rep, 2023, 13(1): 4583. DOI: 10.1038/s41598-023-31484-0.
pmid: 36941277 |
[8] | Uusküla-Reimand L, Wilson MD. Untangling the roles of TOP2A and TOP2B in transcription and cancer[J]. Sci Adv, 2022, 8(44): eadd4920. DOI: 10.1126/sciadv.add4920. |
[9] |
Rottenberg S, Disler C, Perego P. The rediscovery of platinum-based cancer therapy[J]. Nat Rev Cancer, 2021, 21(1): 37-50. DOI: 10.1038/s41568-020-00308-y.
pmid: 33128031 |
[10] |
Faheem MM, Seligson ND, Ahmad SM, et al. Convergence of therapy-induced senescence (TIS) and EMT in multistep carcinogenesis: current opinions and emerging perspectives[J]. Cell Death Discov, 2020, 6: 51. DOI: 10.1038/s41420-020-0286-z.
pmid: 32566256 |
[11] | Fassl A, Geng Y, Sicinski P. CDK4 and CDK6 kinases: from basic science to cancer therapy[J]. Science, 2022, 375(6577): eabc1495. DOI: 10.1126/science.abc1495. |
[12] |
Bousset L, Gil J. Targeting senescence as an anticancer therapy[J]. Mol Oncol, 2022, 16(21): 3855-3880. DOI: 10.1002/1878-0261.13312.
pmid: 36065138 |
[13] | Michalak EM, Burr ML, Bannister AJ, et al. The roles of DNA, RNA and histone methylation in ageing and cancer[J]. Nat Rev Mol Cell Biol, 2019, 20(10): 573-589. DOI: 10.1038/s41580-019-0143-1. |
[14] | Feinberg AP, Levchenko A. Epigenetics as a mediator of plasticity in cancer[J]. Science, 2023, 379(6632): eaaw3835. DOI: 10.1126/science.aaw3835. |
[15] |
López-Otín C, Blasco MA, Partridge L, et al. Hallmarks of aging: an expanding universe[J]. Cell, 2023, 186(2): 243-278. DOI: 10.1016/j.cell.2022.11.001.
pmid: 36599349 |
[16] |
Ruscetti M, Morris JP 4th, Mezzadra R, et al. Senescence-induced vascular remodeling creates therapeutic vulnerabilities in pancreas cancer[J]. Cell, 2020, 181(2): 424-441.e21. DOI: 10.1016/j.cell.2020.03.008.
pmid: 32234521 |
[17] | Marin I, Boix O, Garcia-Garijo A, et al. Cellular senescence is immunogenic and promotes antitumor immunity[J]. Cancer Discov, 2023, 13(2): 410-431. DOI: 10.1158/2159-8290.CD-22-0523. |
[18] |
Baar MP, Brandt RMC, Putavet DA, et al. Targeted apoptosis of senescent cells restores tissue homeostasis in response to chemotoxicity and aging[J]. Cell, 2017, 169(1): 132-147.e16. DOI: 10.1016/j.cell.2017.02.031.
pmid: 28340339 |
[19] |
Wang L, Lankhorst L, Bernards R. Exploiting senescence for the treatment of cancer[J]. Nat Rev Cancer, 2022, 22(6): 340-355. DOI: 10.1038/s41568-022-00450-9.
pmid: 35241831 |
[20] |
Gasek NS, Kuchel GA, Kirkland JL, et al. Strategies for targeting senescent cells in human disease[J]. Nat Aging, 2021, 1(10): 870-879. DOI: 10.1038/s43587-021-00121-8.
pmid: 34841261 |
[21] | Martin N, Popgeorgiev N, Ichim G, et al. BCL-2 proteins in senescence: beyond a simple target for senolysis?[J]. Nat Rev Mol Cell Biol, 2023, 24(8): 517-518. DOI: 10.1038/s41580-023-00594-y. |
[22] | Fan DNY, Schmitt CA. A cFLIP-flop switch for senolysis[J]. Nat Cancer, 2022, 3(11): 1279-1281. DOI: 10.1038/s43018-022-00455-1. |
[23] |
Troiani M, Colucci M, D'Ambrosio M, et al. Single-cell transcriptomics identifies Mcl-1 as a target for senolytic therapy in cancer[J]. Nat Commun, 2022, 13(1): 2177. DOI: 10.1038/s41467-022-29824-1.
pmid: 35449130 |
[24] |
Crunkhorn S. Driving CARs to clear senescent cells[J]. Nat Rev Drug Discov, 2020, 19(8): 509. DOI: 10.1038/d41573-020-00117-w.
pmid: 32581354 |
[25] | Amor C, Feucht J, Leibold J, et al. Senolytic CART cells reverse senescence-associated pathologies[J]. Nature, 2020, 583(7814): 127-132. DOI: 10.1038/s41586-020-2403-9. |
[26] | Crunkhorn S. Fighting ageing with immune checkpoint blockade[J]. Nat Rev Drug Discov, 2023, 22(1): 17. DOI: 10.1038/d41573-022-00194-z. |
[27] |
Cornen S, Vivier E. Chemotherapy and tumor immunity[J]. Science, 2018, 362(6421): 1355-1356. DOI: 10.1126/science.aav7871.
pmid: 30573614 |
[28] |
Chaib S, Tchkonia T, Kirkland JL. Cellular senescence and senolytics: the path to the clinic[J]. Nat Med, 2022, 28(8): 1556-1568. DOI: 10.1038/s41591-022-01923-y.
pmid: 35953721 |
[29] |
Wagner V, Gil J. Senescence as a therapeutically relevant response to CDK4/6 inhibitors[J]. Oncogene, 2020, 39(29): 5165-5176. DOI: 10.1038/s41388-020-1354-9.
pmid: 32541838 |
[30] | Xu Y, Kim JS, Li M. Illuminating anti-ageing[J]. Nat Chem, 2023, 15(4): 451-452. DOI: 10.1038/s41557-023-01164-7. |
[31] |
Dolgin E. Send in the senolytics[J]. Nat Biotechnol, 2020, 38(12): 1371-1377. DOI: 10.1038/s41587-020-00750-1.
pmid: 33184478 |
[32] | Huijbers EJM, Khan KA, Kerbel RS, et al. Tumors resurrect an embryonic vascular program to escape immunity[J]. Sci Immunol, 2022, 7(67): eabm6388. DOI: 10.1126/sciimmunol.abm6388. |
[33] | Prieto LI, Sturmlechner I, Goronzy JJ, et al. Senescent cells as thermostats of antitumor immunity[J]. Sci Transl Med, 2023, 15(699): eadg7291. DOI: 10.1126/scitranslmed.adg7291. |
[34] | Wang TW, Johmura Y, Suzuki N, et al. Blocking PD-L1-PD-1 improves senescence surveillance and ageing phenotypes[J]. Nature, 2022, 611(7935): 358-364. DOI: 10.1038/s41586-022-05388-4. |
[35] | Miyata K, Zhou X, Nishio M, et al. Chromatin conformational changes at human satellite Ⅱ contribute to the senescence phenotype in the tumor microenvironment[J]. Proc Natl Acad Sci U S A, 2023, 120(32): e2305046120. DOI: 10.1073/pnas.2305046120. |
[36] |
Herranz N, Gallage S, Mellone M, et al. mTOR regulates MAPKAPK2 translation to control the senescence-associated secretory phenotype[J]. Nat Cell Biol, 2015, 17(9): 1205-1217. DOI: 10.1038/ncb3225.
pmid: 26280535 |
[37] |
Hua Y, Zheng Y, Yao Y, et al. Metformin and cancer hallmarks: shedding new lights on therapeutic repurposing[J]. J Transl Med, 2023, 21(1): 403. DOI: 10.1186/s12967-023-04263-8.
pmid: 37344841 |
[38] |
van Vliet T, Varela-Eirin M, Wang B, et al. Physiological hypoxia restrains the senescence-associated secretory phenotype via AMPK-mediated mTOR suppression[J]. Mol Cell, 2021, 81(9): 2041-2052.e6. DOI: 10.1016/j.molcel.2021.03.018.
pmid: 33823141 |
[39] | Xu M, Tchkonia T, Ding H, et al. JAK inhibition alleviates the cellular senescence-associated secretory phenotype and frailty in old age[J]. Proc Natl Acad Sci U S A, 2015, 112(46): E6301-E6310. DOI: 10.1073/pnas.1515386112. |
[40] | Rossi JF, Chiang HC, Lu ZY, et al. Optimisation of anti-interleukin-6 therapy: precision medicine through mathematical modelling[J]. Front Immunol, 2022, 13: 919489. DOI: 10.3389/fimmu.2022.919489. |
[41] | Lythgoe MP, Prasad V. Repositioning canakinumab for non-small cell lung cancer-important lessons for drug repurposing in oncology[J]. Br J Cancer, 2022, 127(5): 785-787. DOI: 10.1038/s41416-022-01893-5. |
[42] |
Cohen HJ. The cancer aging interface: a research agenda[J]. J Clin Oncol, 2007, 25(14): 1945-1948. DOI: 10.1200/JCO.2007.10.6807.
pmid: 17488995 |
[43] | Minteer CJ, Thrush K, Gonzalez J, et al. More than bad luck: cancer and aging are linked to replication-driven changes to the epigenome[J]. Sci Adv, 2023, 9(29): eadf4163. DOI: 10.1126/sciadv.adf4163. |
[44] |
Prieto LI, Sturmlechner I, Graves SI, et al. Senescent alveolar macrophages promote early-stage lung tumorigenesis[J]. Cancer Cell, 2023, 41(7): 1261-1275.e6. DOI: 10.1016/j.ccell.2023.05.006.
pmid: 37267954 |
[45] |
Walters H. Senescent macrophages drive lung cancer and accumulate in aging[J]. Nat Aging, 2023, 3(7): 757. DOI: 10.1038/s43587-023-00459-1.
pmid: 37414988 |
[46] | Drapela S, Gomes AP. The aging lung reawakens dormant tumor cells[J]. Nat Cancer, 2023, 4(4): 442-443. DOI: 10.1038/s43018-023-00537-8. |
[47] |
Wong F, Omori S, Donghia NM, et al. Discovering small-molecule senolytics with deep neural networks[J]. Nat Aging, 2023, 3(6): 734-750. DOI: 10.1038/s43587-023-00415-z.
pmid: 37142829 |
[48] |
Smer-Barreto V, Quintanilla A, Elliott RJR, et al. Discovery of senolytics using machine learning[J]. Nat Commun, 2023, 14(1): 3445. DOI: 10.1038/s41467-023-39120-1.
pmid: 37301862 |
[49] |
Bordon Y. Combining EZH2 inhibition with senescence induction helps immune cells fight pancreatic cancer[J]. Nat Rev Immunol, 2023, 23(7): 411. DOI: 10.1038/s41577-023-00898-2.
pmid: 37277561 |
[1] | Liu Na, Kou Jieli, Yang Feng, Liu Taotao, Li Danping, Han Junrui, Yang Lizhou. Clinical value of serum miR-106b-5p and miR-760 combined with low-dose spiral CT in the diagnosis of early lung cancer [J]. Journal of International Oncology, 2024, 51(6): 321-325. |
[2] | Qian Xiaotao, Shi Ziyi, Hu Ge, Wu Xiaowei. Efficacy of consolidation chemotherapy after radical radiotherapy and chemotherapy for stage Ⅲ-ⅣA esophageal squamous cell carcinoma: a real-world clinical study [J]. Journal of International Oncology, 2024, 51(6): 326-331. |
[3] | Yang Mi, Bie Jun, Zhang Jiayong, Deng Jiaxiu, Tang Zuge, Lu Jun. Analysis of the efficacy and prognosis of neoadjuvant therapy for locally advanced resectable esophageal cancer [J]. Journal of International Oncology, 2024, 51(6): 332-337. |
[4] | Yuan Jian, Huang Yanhua. Diagnostic value of Hp-IgG antibody combined with serum DKK1 and sB7-H3 in early gastric cancer [J]. Journal of International Oncology, 2024, 51(6): 338-343. |
[5] | Chen Hongjian, Zhang Suqing. Study on the relationship between serum miR-24-3p, H2AFX and clinical pathological features and postoperative recurrence in liver cancer patients [J]. Journal of International Oncology, 2024, 51(6): 344-349. |
[6] | Guo Zehao, Zhang Junwang. Role of PFDN and its subunits in tumorigenesis and tumor development [J]. Journal of International Oncology, 2024, 51(6): 350-353. |
[7] | Zhang Baihong, Yue Hongyun. Advances in anti-tumor drugs with new mechanisms of action [J]. Journal of International Oncology, 2024, 51(6): 354-358. |
[8] | Xu Fenglin, Wu Gang. Research progress of EBV in tumor immune microenvironment and immunotherapy of nasopharyngeal carcinoma [J]. Journal of International Oncology, 2024, 51(6): 359-363. |
[9] | Wang Ying, Liu Nan, Guo Bing. Advances of antibody-drug conjugate in the therapy of metastatic breast cancer [J]. Journal of International Oncology, 2024, 51(6): 364-369. |
[10] | Zhang Rui, Chu Yanliu. Research progress of colorectal cancer risk assessment models based on FIT and gut microbiota [J]. Journal of International Oncology, 2024, 51(6): 370-375. |
[11] | Gao Fan, Wang Ping, Du Chao, Chu Yanliu. Research progress on intestinal flora and non-surgical treatment of the colorectal cancer [J]. Journal of International Oncology, 2024, 51(6): 376-381. |
[12] | Fan Zhipeng, Yu Jing, Hu Jing, Liao Zhengkai, Xu Yu, Ouyang Wen, Xie Conghua. Predictive value of changes in inflammatory markers for prognosis in patients with advanced non-small cell lung cancer treated with the first-line immunotherapy plus chemotherapy [J]. Journal of International Oncology, 2024, 51(5): 257-266. |
[13] | Liu Jing, Liu Qin, Huang Mei. Prognostic model construction of lung infection in patients with chemoradiotherapy for esophageal cancer based on SMOTE algorithm [J]. Journal of International Oncology, 2024, 51(5): 267-273. |
[14] | Yang Lin, Lu Ning, Wen Hua, Zhang Mingxin, Zhu Lin. Study on the clinical relationship between inflammatory burden index and gastric cancer [J]. Journal of International Oncology, 2024, 51(5): 274-279. |
[15] | Wang Junyi, Hong Kaibin, Ji Rongjia, Chen Dachao. Effect of cancer nodules on liver metastases after radical resection of colorectal cancer [J]. Journal of International Oncology, 2024, 51(5): 280-285. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||