Journal of International Oncology ›› 2024, Vol. 51 ›› Issue (6): 376-381.doi: 10.3760/cma.j.cn371439-20240429-00065
• Reviews • Previous Articles Next Articles
Gao Fan1, Wang Ping2, Du Chao2, Chu Yanliu2()
Received:
2024-04-29
Revised:
2024-05-12
Online:
2024-06-08
Published:
2024-06-28
Contact:
Chu Yanliu, Email: Supported by:
Gao Fan, Wang Ping, Du Chao, Chu Yanliu. Research progress on intestinal flora and non-surgical treatment of the colorectal cancer[J]. Journal of International Oncology, 2024, 51(6): 376-381.
[1] | 周雄, 胡明, 李子帅, 等. 2020年全球及中国结直肠癌流行状况分析[J]. 海军军医大学学报, 2022, 43(12): 1356-1364. DOI: 10.16781/j.CN31-2187/R.20220593. |
[2] | 陈海宁, 王自强, 于永扬, 等. 从全球趋势看我国结直肠癌防控:挑战与策略[J]. 中国科学(生命科学), 2022, 52(11): 1612-1625. |
[3] | 宋德心, 王伟东, 高瑞祺, 等. 肠道菌群在结直肠癌发生发展和诊断治疗中的作用研究进展[J]. 中国普通外科杂志, 2022, 31(4): 527-536. DOI: 10.7659/j.issn.1005-6947.2022.04.015. |
[4] | Jiang SS, Xie YL, Xiao XY, et al. Fusobacterium nucleatum-derived succinic acid induces tumor resistance to immunotherapy in colorectal cancer[J]. Cell Host Microbe, 2023, 31(5): 781-797.e9. DOI: 10.1016/j.chom.2023.04.010. |
[5] | Wang ZK, Dan WY, Zhang NN, et al. Colorectal cancer and gut microbiota studies in China[J]. Gut Microbes, 2023, 15(1): 2236364. DOI: 10.1080/19490976.2023.2236364. |
[6] | Gao YH, Bi DX, Xie RT, et al. Fusobacterium nucleatum enhances the efficacy of PD-L1 blockade in colorectal cancer[J]. Signal Transduct Target Ther, 2021, 6(1): 398. DOI: 10.1038/s41392-021-00795-x. |
[7] |
Yu TC, Guo FF, Yu YN, et al. Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy[J]. Cell, 2017, 170(3): 548-563.e16. DOI: 10.1016/j.cell.2017.07.008.
pmid: 28753429 |
[8] |
Zhang S, Yang YZ, Weng WH, et al. Fusobacterium nucleatum promotes chemoresistance to 5-fluorouracil by upregulation of BIRC3 expression in colorectal cancer[J]. J Exp Clin Cancer Res, 2019, 38(1): 14. DOI: 10.1186/s13046-018-0985-y.
pmid: 30630498 |
[9] | Dong JL, Li Y, Xiao HW, et al. Oral microbiota affects the efficacy and prognosis of radiotherapy for colorectal cancer in mouse models[J]. Cell Rep, 2021, 37(4): 109886. DOI: 10.1016/j.celrep.2021.109886. |
[10] | 吕志堂, 许晓娜, 张怡君. 脆弱拟杆菌在炎症性肠病、结直肠癌促进、调控及防治中的作用[J]. 微生物学杂志, 2020, 40(4): 1-8. DOI: 10.3969/j.issn.1005-7021.2020.04.001. |
[11] |
Boleij A, Hechenbleikner EM, Goodwin AC, et al. The bacteroides fragilis toxin gene is prevalent in the colon mucosa of colorectal cancer patients[J]. Clin Infect Dis, 2015, 60(2): 208-215. DOI: 10.1093/cid/ciu787.
pmid: 25305284 |
[12] |
Wu SG, Dreyfus LA, Tzianabos AO, et al. Diversity of the metalloprotease toxin produced by enterotoxigenic bacteroides fragilis[J]. Infect Immun, 2002, 70(5): 2463-2471. DOI: 10.1128/iai.70.5.2463-2471.2002.
pmid: 11953383 |
[13] | Xie XL, Jiang D, Zhou XB, et al. Recombinant bacteroides fragilis enterotoxin-1 (rBFT-1) promotes proliferation of colorectal cancer via CCL3-related molecular pathways[J]. Open Life Sci, 2021, 16(1): 408-418. DOI: 10.1515/biol-2021-0043. |
[14] | Lv Y, Ye T, Wang HP, et al. Suppression of colorectal tumorige-nesis by recombinant bacteroides fragilis enterotoxin-2 in vivo[J]. World J Gastroenterol, 2017, 23(4): 603-613. DOI: 10.3748/wjg.v23.i4.603. |
[15] |
Sittipo P, Lobionda S, Choi K, et al. Toll-Like receptor 2-mediated suppression of colorectal cancer pathogenesis by polysaccharide a from bacteroides fragilis[J]. Front Microbiol, 2018, 9: 1588. DOI: 10.3389/fmicb.2018.01588.
pmid: 30065713 |
[16] | Lee YK, Mehrabian P, Boyajian SL, et al. The protective role of bacteroides fragilis in a murine model of colitis-associated colorectal cancer[J]. mSphere, 2018, 3(6): e00587-18. DOI: 10.1128/mSphere.00587-18. |
[17] | Pandey H, Tang DWT, Wong SH, et al. Gut microbiota in colorectal cancer: biological role and therapeutic opportunities[J]. Cancers (Basel), 2023, 15(3): 866. DOI: 10.3390/cancers15030866. |
[18] |
Spanogiannopoulos P, Kyaw TS, Guthrie BGH, et al. Host and gut bacteria share metabolic pathways for anti-cancer drug metabolism[J]. Nat Microbiol, 2022, 7(10): 1605-1620. DOI: 10.1038/s41564-022-01226-5.
pmid: 36138165 |
[19] |
Lopès A, Billard E, Casse AH, et al. Colibactin-positive escherichia coli induce a procarcinogenic immune environment leading to immunotherapy resistance in colorectal cancer[J]. Int J Cancer, 2020, 146(11): 3147-3159. DOI: 10.1002/ijc.32920.
pmid: 32037530 |
[20] |
Gagnière J, Bonnin V, Jarrousse AS, et al. Interactions between microsatellite instability and human gut colonization by escherichia coli in colorectal cancer[J]. Clin Sci (Lond), 2017, 131(6): 471-485. DOI: 10.1042/cs20160876.
pmid: 28093453 |
[21] |
Alizadeh S, Esmaeili A, Omidi Y. Anti-cancer properties of escherichia coli nissle 1917 against HT-29 colon cancer cells through regulation of Bax/Bcl-xL and AKT/PTEN signaling pathways[J]. Iran J Basic Med Sci, 2020, 23(7): 886-893. DOI: 10.22038/ijbms.2020.43016.10115.
pmid: 32774810 |
[22] | Chiang CJ, Hong YH. In situ delivery of biobutyrate by probiotic escherichia coli for cancer therapy[J]. Sci Rep, 2021, 11(1): 18172. DOI: 10.1038/s41598-021-97457-3. |
[23] |
Yu XL, Lin CS, Yu J, et al. Bioengineered escherichia coli nissle 1917 for tumour-targeting therapy[J]. Microb Biotechnol, 2020, 13(3): 629-636. DOI: 10.1111/1751-7915.13523.
pmid: 31863567 |
[24] | Nougayrède JP, Chagneau CV, Motta JP, et al. A toxic friend: genotoxic and mutagenic activity of the probiotic strain escherichia coli nissle 1917[J]. mSphere, 2021, 6(4): e0062421. DOI: 10.1128/mSphere.00624-21. |
[25] | Kaiser P. Methionine dependence of cancer[J]. Biomolecules, 2020, 10(4): 568. DOI: 10.3390/biom10040568. |
[26] | Kubota Y, Han QH, Hamada K, et al. Oral installation of recombinant methioninase-producing escherichia coli into the microbiome inhibits colon-cancer growth in a syngeneic mouse model[J]. Cancer Genomics Proteomics, 2022, 19(6): 683-691. DOI: 10. 21873/cgp.20351. |
[27] | Zhou M, Yuan W, Yang B, et al. Clostridium butyricum inhibits the progression of colorectal cancer and alleviates intestinal inflammation via the myeloid differentiation factor 88(MyD88)-nuclear factor-kappa B(NF-κB)signaling pathway[J]. Ann Transl Med, 2022, 10(8): 478. DOI: 10.21037/atm-22-1670. |
[28] | He Y, Fu LH, Li YP, et al. Gut microbial metabolites facilitate anticancer therapy efficacy by modulating cytotoxic CD8+ T cell immunity[J]. Cell Metab, 2021, 33(5): 988-1000.e7. DOI: 10.1016/j.cmet.2021.03.002. |
[29] | Nomura M, Nagatomo R, Doi K, et al. Association of short-chain fatty acids in the gut microbiome with clinical response to treatment with nivolumab or pembrolizumab in patients with solid cancer tumors[J]. JAMA Netw Open, 2020, 3(4): e202895. DOI: 10.1001/jamanetworkopen.2020.2895. |
[30] | Chen JZ, Zhao KN, Vitetta L. Effects of intestinal microbial- elaborated butyrate on oncogenic signaling pathways[J]. Nutrients, 2019, 11(5): 1026. DOI: 10.3390/nu11051026. |
[31] | Stoeva MK, Garcia-So J, Justice N, et al. Butyrate-producing human gut symbiont, clostridium butyricum, and its role in health and disease[J]. Gut Microbes, 2021, 13(1): 1-28. DOI: 10.1080/19490976.2021.1907272. |
[32] | Pu W, Zhang H, Zhang T, et al. Inhibitory effects of clostridium butyricum culture and supernatant on inflammatory colorectal cancer in mice[J]. Front Immunol, 2023: 1004756. DOI: 10.3389/fimmu.2023.1004756. |
[33] |
Chen DF, Jin DC, Huang SM, et al. Clostridium butyricum, a butyrate-producing probiotic, inhibits intestinal tumor development through modulating wnt signaling and gut microbiota[J]. Cancer Lett, 2020, 469: 456-467. DOI: 10.1016/j.canlet.2019.11.019.
pmid: 31734354 |
[34] | Hradicka P, Beal J, Kassayova M, et al. A novel lactic acid bacteria mixture: macrophage-targeted prophylactic intervention in colorectal cancer management[J]. Microorganisms, 2020, 8(3): 387. DOI: 10.3390/microorganisms8030387. |
[35] | An JJ, Ha EM. Combination therapy of lactobacillus plantarum supernatant and 5-fluouracil increases chemosensitivity in colorectal cancer cells[J]. J Microbiol Biotechnol, 2016, 26(8): 1490-1503. DOI: 10.4014/jmb.1605.05024. |
[36] |
An JJ, Ha EM. Lactobacillus-derived metabolites enhance the antitumor activity of 5-FU and inhibit metastatic behavior in 5-FU-resistant colorectal cancer cells by regulating claudin-1 expression[J]. J Microbiol, 2020, 58(11): 967-977. DOI: 10.1007/s12275-020-0375-y.
pmid: 33125671 |
[37] |
An JJ, Ha EM. Extracellular vesicles derived from lactobacillus plantarum restore chemosensitivity through the PDK2-mediated glucose metabolic pathway in 5-FU-resistant colorectal cancer cells[J]. J Microbiol, 2022, 60(7): 735-745. DOI: 10.1007/s12275-022-2201-1.
pmid: 35781627 |
[38] | An JJ, Seok H, Ha EM. GABA-producing lactobacillus plantarum inhibits metastatic properties and induces apoptosis of 5-FU-resistant colorectal cancer cells via GABAB receptor signaling[J]. J Microbiol, 2021, 59(2): 202-216. DOI: 10.1007/s12275-021-0562-5. |
[39] | Kim HJ, An JJ, Ha EM. Lactobacillus plantarum-derived metabolites sensitize the tumor-suppressive effects of butyrate by regula-ting the functional expression of SMCT1 in 5-FU-resistant colorectal cancer cells[J]. J Microbiol, 2022, 60(1): 100-117. DOI: 10.1007/s12275-022-1533-1. |
[40] | Zhang QQ, Zhao Q, Li T, et al. Lactobacillus plantarum-derived indole-3-lactic acid ameliorates colorectal tumorigenesis via epigenetic regulation of CD8+ T cell immunity[J]. Cell Metab, 2023, 35(6): 943-960.e9. DOI: 10.1016/j.cmet.2023.04.015. |
[41] |
Amin M, Navidifar T, Saeb S, et al. Tumor-targeted induction of intrinsic apoptosis in colon cancer cells by lactobacillus plantarum and lactobacillus rhamnosus strains[J]. Mol Biol Rep, 2023, 50(6): 5345-5354. DOI: 10.1007/s11033-023-08445-x.
pmid: 37155013 |
[42] | Si W, Liang H, Bugno J, et al. Lactobacillus rhamnosus GG induces cGAS/STING- dependent type Ⅰ interferon and improves response to immune checkpoint blockade[J]. Gut, 2022, 71(3): 521-533. DOI: 10.1136/gutjnl-2020-323426. |
[43] | Owens JA, Saeedi BJ, Naudin CR, et al. Lactobacillus rhamnosus GG orchestrates an antitumor immune response[J]. Cell Mol Gastroenterol Hepatol, 2021, 12(4): 1311-1327. DOI: 10.1016/j.jcmgh.2021.06.001. |
[44] | Osterlund P, Ruotsalainen T, Korpela R, et al. Lactobacillus supplementation for diarrhoea related to chemotherapy of colorectal cancer: a randomised study[J]. Br J Cancer, 2007, 97(8): 1028-1034. DOI: 10.1038/sj.bjc.6603990. |
[45] | Dougherty MW, Jobin C. Intestinal bacteria and colorectal cancer: etiology and treatment[J]. Gut Microbes, 2023, 15(1): 2185028. DOI: 10.1080/19490976.2023.2185028. |
[46] |
Li Q, Hu W, Liu WX, et al. Streptococcus thermophilus inhibits colorectal tumorigenesis through secreting β-galactosidase[J]. Gastroenterology, 2021, 160(4): 1179-1193.e14. DOI: 10.1053/j.gastro.2020.09.003.
pmid: 32920015 |
[47] |
Yenuganti VR, Yadala R, Azad R, et al. In vitro evaluation of anticancer effects of different probiotic strains on HCT-116 cell line[J]. J Appl Microbiol, 2021, 131(4): 1958-1969. DOI: 10.1111/jam.15060.
pmid: 33694215 |
[48] |
Wang YH, Yao N, Wei KK, et al. The efficacy and safety of probiotics for prevention of chemoradiotherapy-induced diarrhea in people with abdominal and pelvic cancer: a systematic review and meta-analysis[J]. Eur J Clin Nutr, 2016, 70(11): 1246-1253. DOI: 10.1038/ejcn.2016.102.
pmid: 27329608 |
[49] | Liu MM, Li ST, Shu Y, et al. Probiotics for prevention of radiation-induced diarrhea: a meta-analysis of randomized controlled trials[J]. PLoS One, 2017, 12(6): e0178870. DOI: 10.1371/journal.pone.0178870. |
[50] |
Guo YX, Chen Y, Liu XQ, et al. Targeted cancer immunotherapy with genetically engineered oncolytic salmonella typhimurium[J]. Cancer Lett, 2020, 469: 102-110. DOI: 10.1016/j.canlet.2019.10.033.
pmid: 31666180 |
[51] | Lee CH. Employment of salmonella in cancer gene therapy[J]. Methods Mol Biol, 2016, 1409: 79-83. DOI: 10.1007/978-1-4939-3515-4_8. |
[52] | Liu L, Zhang J, Gu M, et al. Antitumor effect of cycle inhibiting factor expression in colon cancer via salmonella VNP20009[J]. Anticancer Agents Med Chem, 2020, 20(14): 1722-1727. DOI: 10.2174/1871520620666200423080622. |
[53] | Liu ZC, Li X, Lu ZK, et al. Repurposing the pentameric B-subunit of shiga toxin for Gb3-targeted immunotherapy of colorectal cancer by rhamnose conjugation[J]. J Pharm Sci, 2022, 111(10): 2719-2729. DOI: 10.1016/j.xphs.2022.07.017. |
[54] | Aguiar SLF, Miranda MCG, Guimarães MAF, et al. High-salt diet induces IL-17-dependent gut inflammation and exacerbates colitis in mice[J]. Front Immunol, 2018, 8: 1969. DOI: 10.3389/fimmu.2017.01969. |
[55] |
Housseau F, Wu SG, Wick EC, et al. Redundant innate and adaptive sources of IL17 production drive colon tumorigenesis[J]. Cancer Res, 2016, 76(8): 2115-2124. DOI: 10.1158/0008-5472.Can-15-0749.
pmid: 26880802 |
[56] | Hwang S, Yi HC, Hwang S, et al. Dietary salt administration decreases enterotoxigenic bacteroides fragilis (ETBF)-promoted tumorigenesis via inhibition of colonic inflammation[J]. Int J Mol Sci, 2020, 21(21): 8034. DOI: 10.3390/ijms21218034. |
[57] | Li S, Liu JY, Zheng XJ, et al. Tumorigenic bacteria in colorectal cancer: mechanisms and treatments[J]. Cancer Biol Med, 2021, 19(2): 147-162. DOI: 10.20892/j.issn.2095-3941.2020.0651. |
[58] |
Blaser MJ. Antibiotic use and its consequences for the normal microbiome[J]. Science, 2016, 352(6285): 544-545. DOI: 10.1126/science.aad9358.
pmid: 27126037 |
[59] |
Boursi B, Haynes K, Mamtani R, et al. Impact of antibiotic exposure on the risk of colorectal cancer[J]. Pharmacoepidemiol Drug Saf, 2015, 24(5): 534-542. DOI: 10.1002/pds.3765.
pmid: 25808540 |
[60] |
Routy B, Le Chatelier E, Derosa L, et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors[J]. Science, 2018, 359(6371): 91-97. DOI: 10.1126/science.aan3706.
pmid: 29097494 |
[61] | Huang JY, Zheng X, Kang WY, et al. Metagenomic and metabolomic analyses reveal synergistic effects of fecal microbiota transplantation and anti-PD-1 therapy on treating colorectal cancer[J]. Front Immunol, 2022, 13: 874922. DOI: 10.3389/fimmu.2022.874922. |
[62] | DeFilipp Z, Bloom PP, Torres Soto M, et al. Drug-resistant E. coli Bacteremia transmitted by fecal microbiota transplant[J]. N Engl J Med, 2019, 381(21): 2043-2050. DOI: 10.1056/NEJMoa1910437. |
[1] | Qian Xiaotao, Shi Ziyi, Hu Ge, Wu Xiaowei. Efficacy of consolidation chemotherapy after radical radiotherapy and chemotherapy for stage Ⅲ-ⅣA esophageal squamous cell carcinoma: a real-world clinical study [J]. Journal of International Oncology, 2024, 51(6): 326-331. |
[2] | Yang Mi, Bie Jun, Zhang Jiayong, Deng Jiaxiu, Tang Zuge, Lu Jun. Analysis of the efficacy and prognosis of neoadjuvant therapy for locally advanced resectable esophageal cancer [J]. Journal of International Oncology, 2024, 51(6): 332-337. |
[3] | Xu Fenglin, Wu Gang. Research progress of EBV in tumor immune microenvironment and immunotherapy of nasopharyngeal carcinoma [J]. Journal of International Oncology, 2024, 51(6): 359-363. |
[4] | Zhang Rui, Chu Yanliu. Research progress of colorectal cancer risk assessment models based on FIT and gut microbiota [J]. Journal of International Oncology, 2024, 51(6): 370-375. |
[5] | Fan Zhipeng, Yu Jing, Hu Jing, Liao Zhengkai, Xu Yu, Ouyang Wen, Xie Conghua. Predictive value of changes in inflammatory markers for prognosis in patients with advanced non-small cell lung cancer treated with the first-line immunotherapy plus chemotherapy [J]. Journal of International Oncology, 2024, 51(5): 257-266. |
[6] | Wang Junyi, Hong Kaibin, Ji Rongjia, Chen Dachao. Effect of cancer nodules on liver metastases after radical resection of colorectal cancer [J]. Journal of International Oncology, 2024, 51(5): 280-285. |
[7] | Yang Hao, Shi Guidong, Zhang Chengcheng, Zhang Yue, Zhang Liwen, Fu Maoyong. Comparison of efficacy and safety between sintilimab and tislelizumab in neoadjuvant therapy for advanced esophageal squamous cell carcinoma [J]. Journal of International Oncology, 2024, 51(4): 210-216. |
[8] | Sa Qiang, Xu Hangcheng, Wang Jiayu. Advances in immunotherapy for breast cancer [J]. Journal of International Oncology, 2024, 51(4): 227-234. |
[9] | Sun Weiwei, Yao Xuemin, Wang Pengjian, Wang Jing, Jia Jinghao. Exploration of prognostic factors and nomogram construction for advanced non-small cell lung cancer treated with immunotherapy based on hematologic indexes [J]. Journal of International Oncology, 2024, 51(3): 143-150. |
[10] | Qian Xiaotao, Shi Ziyi, Hu Ge. A real-world clinical study of immunocheckpoint inhibitor maintenance therapy after radical radiotherapy and chemotherapy in stage Ⅲ-ⅣA esophageal squamous cell carcinoma [J]. Journal of International Oncology, 2024, 51(3): 151-156. |
[11] | Li Shuyue, Ma Chenying, Zhou Juying, Xu Xiaoting, Qin Songbing. Progress of radiotherapy in oligometastatic non-small cell lung cancer [J]. Journal of International Oncology, 2024, 51(3): 170-174. |
[12] | Liu Yulan, Jing Haiyan, Sun Jing, Song Wei, Sha Dan. Advances in predicting efficacy and prognostic markers of immunotherapy for gastric cancer [J]. Journal of International Oncology, 2024, 51(3): 175-180. |
[13] | Yue Hongyun, Zhang Baihong. Differentiation therapies in human cancers [J]. Journal of International Oncology, 2024, 51(2): 109-113. |
[14] | Sun Guobao, Yang Qian, Zhuang Qingchun, Gao Binbin, Sun Xiaogang, Song Wei, Sha Dan. Research progress on the histopathological growth patterns of colorectal liver metastasis [J]. Journal of International Oncology, 2024, 51(2): 114-118. |
[15] | Jin Xudong, Chen Zhongjian, Mao Weimin. Research progress on the role of MTAP in malignant mesothelioma [J]. Journal of International Oncology, 2024, 51(2): 99-104. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||