Journal of International Oncology ›› 2024, Vol. 51 ›› Issue (3): 143-150.doi: 10.3760/cma.j.cn371439-20231109-00023
• Original Articles • Previous Articles Next Articles
Sun Weiwei1, Yao Xuemin1, Wang Pengjian1, Wang Jing2, Jia Jinghao1()
Received:
2023-11-09
Revised:
2023-12-14
Online:
2024-03-08
Published:
2024-04-10
Contact:
Jia Jinghao, Email: Supported by:
Sun Weiwei, Yao Xuemin, Wang Pengjian, Wang Jing, Jia Jinghao. Exploration of prognostic factors and nomogram construction for advanced non-small cell lung cancer treated with immunotherapy based on hematologic indexes[J]. Journal of International Oncology, 2024, 51(3): 143-150.
"
血液学指标 | 基线期 | 最佳缓解期 | 疾病进展期 |
---|---|---|---|
中性粒细胞(×109/L) | 4.63(3.20,6.05) | 4.16(2.63,5.51) | 4.45(3.36,5.28) |
血小板(×109/L) | 261.70±91.68 | 223.12±93.57 | 229.80±78.53 |
血红蛋白(g/L) | 131.27±16.65 | 124.33±18.21 | 126.39±22.60 |
嗜酸性粒细胞(×109/L) | 0.11(0.07,0.25) | 0.09(0.03,0.16) | 0.13(0.07,0.21) |
纤维蛋白原(g/L) | 4.14±0.86 | 3.72±0.78 | 4.02±0.95 |
D-二聚体(μg/L) | 212.00(103.50,395.50) | 152.00(86.50,277.80) | 181.00(115.00,608.00) |
C-反应蛋白(mg/L) | 17.30(5.60,33.45) | 5.75(2.20,17.58) | 14.30(4.83,36.18) |
LDH(U/L) | 222.00(179.00,284.00) | 210.00(166.25,246.25) | 207.00(175.25,296.00) |
ALB(g/L) | 41.23±6.03 | 41.67±3.93 | 40.53±5.66 |
NLR | 3.21(2.20,4.39) | 2.73(1.63,4.09) | 3.27(2.23,4.91) |
PLR | 170.35(131.32,229.47) | 149.16(100.39,225.99) | 169.79(122.19,236.74) |
LMR | 2.43(1.79,3.20) | 2.41(1.93,3.60) | 2.33(1.63,3.03) |
"
因素 | HR值 | 95%CI | P值 | 因素 | HR值 | 95%CI | P值 | |
---|---|---|---|---|---|---|---|---|
年龄 | 2.09 | 1.17~3.74 | 0.013 | 血小板 | 1.00 | 1.00~1.00 | 0.640 | |
性别 | 1.01 | 0.49~2.11 | 0.974 | 血红蛋白 | 1.00 | 0.97~1.02 | 0.701 | |
ECOG评分 | 1.67 | 0.49~5.73 | 0.414 | 嗜酸性粒细胞 | 0.63 | 0.19~2.08 | 0.446 | |
吸烟史 | 1.16 | 0.64~2.09 | 0.629 | 纤维蛋白原 | 1.55 | 0.97~2.46 | 0.064 | |
病理类型 | 0.90 | 0.51~1.60 | 0.715 | D-二聚体 | 1.00 | 1.00~1.00 | 0.002 | |
临床分期 | 1.02 | 0.56~1.87 | 0.951 | C-反应蛋白 | 1.01 | 0.99~1.02 | 0.485 | |
放疗史 | 0.64 | 0.36~1.13 | 0.123 | LDH | 1.01 | 1.00~1.01 | 0.006 | |
治疗方案 | 1.51 | 0.78~2.90 | 0.222 | ALB | 0.93 | 0.85~1.03 | 0.151 | |
治疗线数 | 2.23 | 1.21~4.12 | 0.010 | NLR | 1.07 | 0.95~1.21 | 0.281 | |
基线期 | PLR | 1.00 | 1.00~1.01 | 0.354 | ||||
中性粒细胞 | 0.98 | 0.92~1.05 | 0.576 | LMR | 0.73 | 0.50~1.06 | 0.096 | |
血小板 | 1.00 | 1.00~1.00 | 0.289 | 疾病进展期 | ||||
血红蛋白 | 0.99 | 0.97~1.00 | 0.090 | 中性粒细胞 | 1.15 | 0.97~1.37 | 0.106 | |
嗜酸性粒细胞 | 1.06 | 0.75~1.48 | 0.754 | 血小板 | 1.00 | 1.00~1.00 | 0.900 | |
纤维蛋白原 | 1.31 | 0.91~1.89 | 0.150 | 血红蛋白 | 0.97 | 0.96~0.99 | <0.001 | |
D-二聚体 | 1.00 | 1.00~1.00 | 0.421 | 嗜酸性粒细胞 | 1.52 | 0.78~2.95 | 0.221 | |
C-反应蛋白 | 1.00 | 1.00~1.01 | 0.101 | 纤维蛋白原 | 1.28 | 0.96~1.72 | 0.094 | |
LDH | 1.00 | 1.00~1.00 | 0.138 | D-二聚体 | 1.00 | 1.00~1.00 | 0.002 | |
ALB | 0.99 | 0.92~1.06 | 0.735 | C-反应蛋白 | 1.01 | 1.00~1.01 | 0.011 | |
NLR | 1.05 | 0.97~1.13 | 0.228 | LDH | 1.00 | 1.00~1.01 | 0.055 | |
PLR | 1.00 | 1.00~1.00 | 0.699 | ALB | 0.91 | 0.87~0.96 | 0.001 | |
LMR | 0.75 | 0.57~0.97 | 0.028 | NLR | 1.16 | 1.05~1.27 | 0.002 | |
最佳缓解期 | PLR | 1.00 | 1.00~1.01 | 0.052 | ||||
中性粒细胞 | 0.98 | 0.93~1.04 | 0.555 | LMR | 0.62 | 0.42~0.90 | 0.012 |
"
因素 | β值 | SE值 | Wald值 | HR值 | 95%CI | P值 |
---|---|---|---|---|---|---|
年龄 | -0.09 | 0.03 | 8.10 | 0.91 | 0.86~0.97 | 0.004 |
最佳缓解期 | ||||||
纤维蛋白原 | -0.03 | 0.38 | 0.00 | 0.98 | 0.47~2.04 | 0.947 |
LDH | 0.00 | 0.01 | 0.24 | 1.00 | 0.99~1.01 | 0.626 |
疾病进展期 | ||||||
血红蛋白 | 0.00 | 0.01 | 0.02 | 1.00 | 0.97~1.03 | 0.891 |
D-二聚体 | 0.00 | 0.00 | 0.09 | 1.00 | 1.00~1.00 | 0.763 |
C-反应蛋白 | -0.01 | 0.01 | 1.23 | 1.00 | 0.97~1.01 | 0.268 |
LDH | 0.01 | 0.00 | 6.11 | 1.01 | 1.00~1.01 | 0.013 |
ALB | -0.20 | 1.00 | 4.20 | 0.82 | 0.67~0.99 | 0.041 |
LMR | -0.22 | 0.35 | 0.40 | 0.80 | 0.40~1.60 | 0.528 |
[1] | Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660. |
[2] | de Castro G Jr, Kudaba I, Wu YL, et al. Five-year outcomes with pembrolizumab versus chemotherapy as first-line therapy in patients with non-small-cell lung cancer and programmed death ligand-1 tumor proportion score ≥ 1% in the KEYNOTE-042 study[J]. J Clin Oncol, 2023, 41(11): 1986-1991. DOI: 10.1200/JCO.21.02885. |
[3] |
Zhou F, Qiao M, Zhou C. The cutting-edge progress of immune-checkpoint blockade in lung cancer[J]. Cell Mol Immunol, 2021, 18(2): 279-293. DOI: 10.1038/s41423-020-00577-5.
pmid: 33177696 |
[4] |
Shankar B, Zhang J, Naqash AR, et al. Multisystem immune-related adverse events associated with immune checkpoint inhibitors for treatment of non-small cell lung cancer[J]. JAMA Oncol, 2020, 6(12): 1952-1956. DOI: 10.1001/jamaoncol.2020.5012.
pmid: 33119034 |
[5] | Rebuzzi SE, Prelaj A, Friedlaender A, et al. Prognostic scores including peripheral blood-derived inflammatory indices in patients with advanced non-small-cell lung cancer treated with immune checkpoint inhibitors[J]. Crit Rev Oncol Hematol, 2022, 179: 103806. DOI: 10.1016/j.critrevonc.2022.103806. |
[6] | Zhang N, Jiang J, Tang S, et al. Predictive value of neutrophil-lymphocyte ratio and platelet-lymphocyte ratio in non-small cell lung cancer patients treated with immune checkpoint inhibitors: a meta-analysis[J]. Int Immunopharmacol, 2020, 85: 106677. DOI: 10.1016/j.intimp.2020.106677. |
[7] | Zheng L, Xiong A, Wang S, et al. Decreased monocyte-to-lymphocyte ratio was associated with satisfied outcomes of first-line PD-1 inhibitors plus chemotherapy in stage ⅢB -Ⅳ non-small cell lung cancer[J]. Front Immunol, 2023, 14: 1094378. DOI: 10.3389/fimmu.2023.1094378. |
[8] |
Eisenhauer EA, Therasse P, Bogaerts J, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1)[J]. Eur J Cancer, 2009, 45(2): 228-247. DOI: 10.1016/j.ejca.2008.10.026.
pmid: 19097774 |
[9] |
Li X, Wenes M, Romero P, et al. Navigating metabolic pathways to enhance antitumour immunity and immunotherapy[J]. Nat Rev Clin Oncol, 2019, 16(7): 425-441. DOI: 10.1038/s41571-019-0203-7.
pmid: 30914826 |
[10] |
Xia L, Oyang L, Lin J, et al. The cancer metabolic reprogramming and immune response[J]. Mol Cancer, 2021, 20(1): 28. DOI: 10.1186/s12943-021-01316-8.
pmid: 33546704 |
[11] | Reck M, Rodríguez-Abreu D, Robinson AG, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer[J]. N Engl J Med, 2016, 375(19): 1823-1833. DOI: 10.1056/NEJMoa1606774. |
[12] |
Rittmeyer A, Barlesi F, Waterkamp D, et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial[J]. Lancet, 2017, 389(10066): 255-265. DOI: 10.1016/S0140-6736(16)32517-X.
pmid: 27979383 |
[13] | Wang X, Ma L, Pei X, et al. Comprehensive assessment of cellular senescence in the tumor microenvironment[J]. Brief Bioinform, 2022, 23(3): bbac118. DOI: 10.1093/bib/bbac118. |
[14] | Yang F, Markovic SN, Molina JR, et al. Association of sex, age, and eastern cooperative oncology group performance status with survival benefit of cancer immunotherapy in randomized clinical trials: a systematic review and meta-analysis[J]. JAMA Netw Open, 2020, 3(8): e2012534. DOI: 10.1001/jamanetworkopen.2020.12534. |
[15] | Molinier O, Besse B, Barlesi F, et al. IFCT-1502 CLINIVO: real-world evidence of long-term survival with nivolumab in a nationwide cohort of patients with advanced non-small-cell lung cancer[J]. ESMO Open, 2022, 7(1): 100353. DOI: 10.1016/j.esmoop.2021.100353. |
[16] |
Waterhouse D, Lam J, Betts KA, et al. Real-world outcomes of immunotherapy-based regimens in first-line advanced non-small cell lung cancer[J]. Lung Cancer, 2021, 156: 41-49. DOI: 10.1016/j.lungcan.2021.04.007.
pmid: 33894493 |
[17] | Kumagai S, Koyama S, Itahashi K, et al. Lactic acid promotes PD-1 expression in regulatory T cells in highly glycolytic tumor microenvironments[J]. Cancer Cell, 2022, 40(2): 201-218.e9. DOI: 10.1016/j.ccell.2022.01.001. |
[18] | Van Wilpe S, Koornstra R, Den Brok M, et al. Lactate dehydrogenase: a marker of diminished antitumor immunity[J]. Oncoimmunology, 2020, 9(1): 1731942. DOI: 10.1080/2162402X.2020.1731942. |
[19] | Callejo A, Frigola J, Iranzo P, et al. Interrelations between patients' clinicopathological characteristics and their association with response to immunotherapy in a real-world cohort of NSCLC patients[J]. Cancers (Basel), 2021, 13(13): 3249. DOI: 10.3390/cancers13133249. |
[20] |
Tjokrowidjaja A, Lord SJ, John T, et al. Pre- and on-treatment lactate dehydrogenase as a prognostic and predictive biomarker in advanced non-small cell lung cancer[J]. Cancer, 2022, 128(8): 1574-1583. DOI: 10.1002/cncr.34113.
pmid: 35090047 |
[21] | Yoo SK, Chowell D, Valero C, et al. Pre-treatment serum albumin and mutational burden as biomarkers of response to immune checkpoint blockade[J]. NPJ Precis Oncol, 2022, 6(1): 23. DOI: 10.1038/s41698-022-00267-7. |
[22] |
Takada K, Takamori S, Yoneshima Y, et al. Serum markers associated with treatment response and survival in non-small cell lung cancer patients treated with anti-PD-1 therapy[J]. Lung Cancer, 2020, 145: 18-26. DOI: 10.1016/j.lungcan.2020.04.034.
pmid: 32388276 |
[23] | Gouez M, Delrieu L, Bouleuc C, et al. Association between nutritional status and treatment response and survival in patients treated with immunotherapy for lung cancer: a retrospective french study[J]. Cancers (Basel), 2022, 14(14): 3439. DOI: 10.3390/cancers14143439. |
[24] |
Ma G, Zhang Z, Li P, et al. Reprogramming of glutamine metabolism and its impact on immune response in the tumor microenvironment[J]. Cell Commun Signal, 2022, 20(1): 114. DOI: 10.1186/s12964-022-00909-0.
pmid: 35897036 |
[25] |
de Visser KE, Joyce JA. The evolving tumor microenvironment: from cancer initiation to metastatic outgrowth[J]. Cancer Cell, 2023, 41(3): 374-403. DOI: 10.1016/j.ccell.2023.02.016.
pmid: 36917948 |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||