Journal of International Oncology ›› 2024, Vol. 51 ›› Issue (6): 359-363.doi: 10.3760/cma.j.cn371439-20240119-00062
• Reviews • Previous Articles Next Articles
Received:
2024-01-19
Revised:
2024-02-06
Online:
2024-06-08
Published:
2024-06-28
Contact:
Wu Gang, Email: Supported by:
Xu Fenglin, Wu Gang. Research progress of EBV in tumor immune microenvironment and immunotherapy of nasopharyngeal carcinoma[J]. Journal of International Oncology, 2024, 51(6): 359-363.
[1] | Chang ET, Ye W, Ernberg I, et al. A novel causal model for nasopharyngeal carcinoma[J]. Cancer Causes Control, 2022, 33(7): 1013-1018. DOI: 10.1007/s10552-022-01582-x. |
[2] | Ding X, Zhang WJ, You R, et al. Camrelizumab plus apatinib in patients with recurrent or metastatic nasopharyngeal carcinoma: an open-label, single-arm, phase Ⅱ study[J]. J Clin Oncol, 2023, 41(14): 2571-2582. DOI: 10.1200/JCO.22.01450. |
[3] | Jin SZ, Li RY, Chen MY, et al. Single-cell transcriptomic analysis defines the interplay between tumor cells, viral infection, and the microenvironment in nasopharyngeal carcinoma[J]. Cell Res, 2020, 30(11): 950-965. DOI: 10.1038/s41422-020-00402-8. |
[4] |
Gong LQ, Kwong DLW, Dai W, et al. Comprehensive single-cell sequencing reveals the stromal dynamics and tumor-specific characteristics in the microenvironment of nasopharyngeal carcinoma[J]. Nat Commun, 2021, 12(1): 1540. DOI: 10.1038/s41467-021-21795-z.
pmid: 33750785 |
[5] | Chen HW, Duan XB, Deng XH, et al. EBV-upregulated B7-H3 inhibits NK cell-mediated antitumor function and contributes to nasopharyngeal carcinoma progression[J]. Cancer Immunol Res, 2023, 11(6): 830-846. DOI: 10.1158/2326-6066.CIR-22-0374. |
[6] |
Orange JS. How I manage natural killer cell deficiency[J]. J Clin Immunol, 2020, 40(1): 13-23. DOI: 10.1007/s10875-019-00711-7.
pmid: 31754930 |
[7] | Albanese M, Tagawa T, Hammerschmidt W. Strategies of Epstein-Barr virus to evade innate antiviral immunity of its human host[J]. Front Microbiol, 2022, 13: 955603. DOI: 10.3389/fmicb.2022.955603. |
[8] | Wang ZH, Pei XF, Zhu ZQ, et al. CD47 overexpression is associated with Epstein-Barr virus infection and poor prognosis in patients with nasopharyngeal carcinoma[J]. Onco Targets Ther, 2020, 13: 3325-3334. DOI: 10.2147/OTT.S245023. |
[9] |
von Roemeling CA, Wang YF, Qie YQ, et al. Therapeutic modulation of phagocytosis in glioblastoma can activate both innate and adaptive antitumour immunity[J]. Nat Commun, 2020, 11(1): 1508. DOI: 10.1038/s41467-020-15129-8.
pmid: 32198351 |
[10] |
Sun W, Chen L, Tang J, et al. Targeting EZH2 depletes LMP1-induced activated regulatory T cells enhancing antitumor immunity in nasopharyngeal carcinoma[J]. J Cancer Res Ther, 2020, 16(2): 309-319. DOI: 10.4103/jcrt.JCRT_986_19.
pmid: 32474518 |
[11] |
Liu Y, Lui KS, Ye ZD, et al. EBV latent membrane protein 1 augments γδ T cell cytotoxicity against nasopharyngeal carcinoma by induction of butyrophilin molecules[J]. Theranostics, 2023, 13(2): 458-471. DOI: 10.7150/thno.78395.
pmid: 36632221 |
[12] | Chen HW, Zhang X, Zhang SS, et al. T cell epitope screening of Epstein-Barr virus fusion protein gB[J]. J Virol, 2021, 95(10): JVI.00021-JVI.00081. DOI: 10.1128/JVI.00081-21. |
[13] | Kase K, Kondo S, Wakisaka N, et al. Epstein-Barr virus LMP1 induces soluble PD-L1 in nasopharyngeal carcinoma[J]. Microorganisms, 2021, 9(3): 603. DOI: 10.3390/microorganisms9030603. |
[14] |
Wang J, Ge JS, Wang YA, et al. EBV miRNAs BART11 and BART17-3p promote immune escape through the enhancer-mediated transcription of PD-L1[J]. Nat Commun, 2022, 13(1): 866. DOI: 10.1038/s41467-022-28479-2.
pmid: 35165282 |
[15] | Caudell JJ, Gillison ML, Maghami E, et al. NCCN guidelines® insights: head and neck cancers, version 1.2022[J]. J Natl Compr Canc Netw, 2022, 20(3): 224-234. DOI: 10.6004/jnccn.2022.0016. |
[16] | Han JQ, Zeng N, Tian K, et al. First-line immunotherapy combinations for recurrent or metastatic nasopharyngeal carcinoma: an updated network meta-analysis and cost-effectiveness analysis[J]. Head Neck, 2023, 45(9): 2246-2258. DOI: 10.1002/hed.27452. |
[17] | Mai HQ, Chen QY, Chen DP, et al. Toripalimab or placebo plus chemotherapy as first-line treatment in advanced nasopharyngeal carcinoma: a multicenter randomized phase 3 trial[J]. Nat Med, 2021, 27(9): 1536-1543. DOI: 10.1038/s41591-021-01444-0. |
[18] | Yang YP, Qu S, Li JG, et al. Camrelizumab versus placebo in combination with gemcitabine and cisplatin as first-line treatment for recurrent or metastatic nasopharyngeal carcinoma (CAPTAIN-1st): a multicentre, randomised, double-blind, phase 3 trial[J]. Lancet Oncol, 2021, 22(8): 1162-1174. DOI: 10.1016/S1470-2045(21)00302-8. |
[19] |
Yang YP, Pan AA, Wang H, et al. Tislelizumab plus chemotherapy as first-line treatment for recurrent or metastatic nasopharyngeal cancer: a multicenter phase 3 trial (RATIONALE-309)[J]. Cancer Cell, 2023, 41(6): 1061-1072.e4. DOI: 10.1016/j.ccell.2023.04.014.
pmid: 37207654 |
[20] |
Wang FH, Wei XL, Feng JF, et al. Efficacy, safety, and correlative biomarkers of toripalimab in previously treated recurrent or metastatic nasopharyngeal carcinoma: a phase Ⅱ clinical trial (POLARIS-02)[J]. J Clin Oncol, 2021, 39(7): 704-712. DOI: 10.1200/JCO.20.02712.
pmid: 33492986 |
[21] | Jiang YF, Fang T, Lu N, et al. Anti-PD1 rechallenge in combination with anti-angiogenesis or anti-EGFR treatment beyond progression in recurrent/metastatic nasopharyngeal carcinoma patients[J]. Crit Rev Oncol Hematol, 2023, 190: 104113. DOI: 10.1016/j.critrevonc.2023.104113. |
[22] | Lim DWT, Kao HF, Suteja L, et al. Clinical efficacy and biomarker analysis of dual PD-1/CTLA-4 blockade in recurrent/metastatic EBV-associated nasopharyngeal carcinoma[J]. Nat Commun, 2023, 14(1): 2781. DOI: 10.1038/s41467-023-38407-7. |
[23] | Xiang Y, Tian MM, Huang J, et al. LMP2-mRNA lipid nanoparticle sensitizes EBV-related tumors to anti-PD-1 therapy by rever-sing T cell exhaustion[J]. J Nanobiotechnology, 2023, 21(1): 324. DOI: 10.1186/s12951-023-02069-w. |
[24] | Li WZ, Lv SH, Liu GY, et al. Epstein-Barr virus DNA seropositi-vity links distinct tumoral heterogeneity and immune landscape in nasopharyngeal carcinoma[J]. Front Immunol, 2023, 14: 1124066. DOI: 10.3389/fimmu.2023.1124066. |
[25] | Mahadeo KM, Baiocchi R, Beitinjaneh A, et al. Tabelecleucel for allogeneic haematopoietic stem-cell or solid organ transplant reci-pients with Epstein-Barr virus-positive post-transplant lymphoproliferative disease after failure of rituximab or rituximab and chemotherapy (ALLELE): a phase 3, multicentre, open-label trial[J]. Lancet Oncol, 2024, 25(3): 376-387. DOI: 10.1016/S1470-2045(23)00649-6. |
[26] | Jia QZ, Peng L, Chen G, et al. TCR-T cells armored with immune checkpoint blockade in EBV-positive nasopharyngeal carcinoma: the first-in-human phase 1/2 trial[J]. J Clin Oncol, 2023, 41(16): 6047. DOI: 10.1200/JCO.2023.41.16_suppl.6047. |
[27] | Wang CW, Chen JW, Li JY, et al. An EBV-related CD4 TCR immunotherapy inhibits tumor growth in an HLA-DP5+ nasopha-ryngeal cancer mouse model[J]. J Clin Invest, 2024, 134(8): e172092. DOI: 10.1172/JCI172092. |
[28] | Nickles E, Dharmadhikari B, Yating L, et al. Dendritic cell therapy with CD137L-DC-EBV-VAX in locally recurrent or metastatic nasopharyngeal carcinoma is safe and confers clinical benefit[J]. Cancer Immunol Immunother, 2022, 71(6): 1531-1543. DOI: 10.1007/s00262-021-03075-3. |
[29] | Zhu XZ, Perales-Puchalt A, Wojtak K, et al. DNA immunotherapy targeting BARF1 induces potent anti-tumor responses against Epstein-Barr-virus-associated carcinomas[J]. Mol Ther Oncolytics, 2022, 24: 218-229. DOI: 10.1016/j.omto.2021.12.017. |
[30] | Guo MR, Duan X, Peng XC, et al. A lipid-based LMP2-mRNA vaccine to treat nasopharyngeal carcinoma[J]. Nano Res, 2023, 16(4): 5357-5367. DOI: 10.1007/s12274-022-5254-x. |
[31] |
Zeng Y, Si YF, Lan GP, et al. LMP2-DC vaccine elicits specific EBV-LMP2 response to effectively improve immunotherapy in patients with nasopharyngeal cancer[J]. Biomed Environ Sci, 2020, 33(11): 849-856. DOI: 10.3967/bes2020.115.
pmid: 33771238 |
[32] |
Rühl J, Citterio C, Engelmann C, et al. Heterologous prime-boost vaccination protects against EBV antigen-expressing lymphomas[J]. J Clin Invest, 2019, 129(5): 2071-2087. DOI: 10.1172/JCI125364.
pmid: 31042161 |
[33] |
Dummer R, Gyorki DE, Hyngstrom JR, et al. Final 5-year follow-up results evaluating neoadjuvant talimogene laherparepvec plus surgery in advanced melanoma: a randomized clinical trial[J]. JAMA Oncol, 2023, 9(10): 1457-1459. DOI: 10.1001/jamaoncol.2023.2789.
pmid: 37561473 |
[1] | Yang Mi, Bie Jun, Zhang Jiayong, Deng Jiaxiu, Tang Zuge, Lu Jun. Analysis of the efficacy and prognosis of neoadjuvant therapy for locally advanced resectable esophageal cancer [J]. Journal of International Oncology, 2024, 51(6): 332-337. |
[2] | Gao Fan, Wang Ping, Du Chao, Chu Yanliu. Research progress on intestinal flora and non-surgical treatment of the colorectal cancer [J]. Journal of International Oncology, 2024, 51(6): 376-381. |
[3] | Fan Zhipeng, Yu Jing, Hu Jing, Liao Zhengkai, Xu Yu, Ouyang Wen, Xie Conghua. Predictive value of changes in inflammatory markers for prognosis in patients with advanced non-small cell lung cancer treated with the first-line immunotherapy plus chemotherapy [J]. Journal of International Oncology, 2024, 51(5): 257-266. |
[4] | Yang Hao, Shi Guidong, Zhang Chengcheng, Zhang Yue, Zhang Liwen, Fu Maoyong. Comparison of efficacy and safety between sintilimab and tislelizumab in neoadjuvant therapy for advanced esophageal squamous cell carcinoma [J]. Journal of International Oncology, 2024, 51(4): 210-216. |
[5] | Sa Qiang, Xu Hangcheng, Wang Jiayu. Advances in immunotherapy for breast cancer [J]. Journal of International Oncology, 2024, 51(4): 227-234. |
[6] | Sun Weiwei, Yao Xuemin, Wang Pengjian, Wang Jing, Jia Jinghao. Exploration of prognostic factors and nomogram construction for advanced non-small cell lung cancer treated with immunotherapy based on hematologic indexes [J]. Journal of International Oncology, 2024, 51(3): 143-150. |
[7] | Liu Yulan, Jing Haiyan, Sun Jing, Song Wei, Sha Dan. Advances in predicting efficacy and prognostic markers of immunotherapy for gastric cancer [J]. Journal of International Oncology, 2024, 51(3): 175-180. |
[8] | Cui Tenglu, Lyu lu, Sun Pengfei. Application of radiotherapy combined with immunotherapy in the treatment of head and neck squamous cell carcinoma [J]. Journal of International Oncology, 2023, 50(9): 548-552. |
[9] | Guo Ciliang, Jiang Chunping, Wu Junhua. Gut microbiome and tumor immunotherapy [J]. Journal of International Oncology, 2023, 50(7): 432-436. |
[10] | Li Qingshan, Xie Xin, Zhang Nan, Liu Shuai. Research progress on the application of combining radiotherapy and systemic therapy in breast cancer [J]. Journal of International Oncology, 2023, 50(6): 362-367. |
[11] | Lyu Lu, Sun Pengfei. Gut flora and cervical cancer [J]. Journal of International Oncology, 2023, 50(6): 373-376. |
[12] | Gu Anqin, Long Jinhua, Jin Feng. Clinical research progress of immunotherapy for nasopharyngeal carcinoma [J]. Journal of International Oncology, 2023, 50(5): 299-303. |
[13] | Ding Hao, Ying Jintao, Fu Maoyong. Research progress of CAR-T in the treatment of esophageal squamous cell carcinoma [J]. Journal of International Oncology, 2023, 50(4): 231-235. |
[14] | Ma Pengcheng, Chen Yu. Research progress of primary pulmonary lymphoepithelioma-like carcinoma [J]. Journal of International Oncology, 2023, 50(3): 174-178. |
[15] | Xu Liangfu, Li Yuanfei. Research progress on tumor microenvironment and immune combination therapy of MSS colorectal cancer [J]. Journal of International Oncology, 2023, 50(3): 186-190. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||