Journal of International Oncology ›› 2023, Vol. 50 ›› Issue (6): 373-376.doi: 10.3760/cma.j.cn371439-20230410-00074
• Reviews • Previous Articles Next Articles
Received:
2023-04-10
Revised:
2023-04-20
Online:
2023-06-08
Published:
2023-07-11
Contact:
Sun Pengfei,Email:Lyu Lu, Sun Pengfei. Gut flora and cervical cancer[J]. Journal of International Oncology, 2023, 50(6): 373-376.
[1] |
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
doi: 10.3322/caac.21660 |
[2] |
Nishida A, Inoue R, Inatomi O, et al. Gut microbiota in the pathogenesis of inflammatory bowel disease[J]. Clin J Gastroenterol, 2018, 11(1): 1-10. DOI: 10.1007/s12328-017-0813-5.
doi: 10.1007/s12328-017-0813-5 pmid: 29285689 |
[3] |
Lee CJ, Sears CL, Maruthur N. Gut microbiome and its role in obesity and insulin resistance[J]. Ann N Y Acad Sci, 2020, 1461(1): 37-52. DOI: 10.1111/nyas.14107.
doi: 10.1111/nyas.14107 |
[4] |
Singer-Englar T, Barlow G, Mathur R. Obesity, diabetes, and the gut microbiome: an updated review[J]. Expert Rev Gastroenterol Hepatol, 2019, 13(1): 3-15. DOI: 10.1080/17474124.2019.1543023.
doi: 10.1080/17474124.2019.1543023 |
[5] |
Franzosa EA, Sirota-Madi A, Avila-Pacheco J, et al. Author correction: gut microbiome structure and metabolic activity in inflammatory bowel disease[J]. Nat Microbiol, 2019, 4(5): 898. DOI: 10.1038/s41564-019-0442-5.
doi: 10.1038/s41564-019-0442-5 pmid: 30971771 |
[6] |
Pimentel M, Lembo A. Microbiome and its role in irritable bowel syndrome[J]. Dig Dis Sci, 2020, 65(3): 829-839. DOI: 10.1007/s10620-020-06109-5.
doi: 10.1007/s10620-020-06109-5 |
[7] |
Sims TT, Colbert LE, Zheng J, et al. Gut microbial diversity and genus-level differences identified in cervical cancer patients versus healthy controls[J]. Gynecol Oncol, 2019, 155(2): 237-244. DOI: 10.1016/j.ygyno.2019.09.002.
doi: S0090-8258(19)31489-1 pmid: 31500892 |
[8] |
Kang GU, Jung DR, Lee YH, et al. Dynamics of fecal microbiota with and without invasive cervical cancer and its application in early diagnosis[J]. Cancers (Basel), 2020, 12(12): 3800. DOI: 10.3390/cancers12123800.
doi: 10.3390/cancers12123800 |
[9] |
Wang Z, Wang Q, Zhao J, et al. Altered diversity and composition of the gut microbiome in patients with cervical cancer[J]. AMB Express, 2019, 9(1): 40. DOI: 10.1186/s13568-019-0763-z.
doi: 10.1186/s13568-019-0763-z pmid: 30904962 |
[10] |
You L, Cui H, Zhao F, et al. Inhibition of HMGB1/RAGE axis suppressed the lipopolysaccharide (LPS)-induced vicious transformation of cervical epithelial cells[J]. Bioengineered, 2021, 12(1): 4995-5003. DOI: 10.1080/21655979.2021.1957750.
doi: 10.1080/21655979.2021.1957750 pmid: 34369271 |
[11] |
Karpinets TV, Solley TN, Mikkelson MD, et al. Effect of antibiotics on gut and vaginal microbiomes associated with cervical cancer development in mice[J]. Cancer Prev Res (Phila), 2020, 13(12): 997-1006. DOI: 10.1158/1940-6207.CAPR-20-0103.
doi: 10.1158/1940-6207.CAPR-20-0103 |
[12] |
Colombo N, Dubot C, Lorusso D, et al. Pembrolizumab for persistent, recurrent, or metastatic cervical cancer[J]. N Engl J Med, 2021, 385(20): 1856-1867. DOI: 10.1056/NEJMoa2112435.
doi: 10.1056/NEJMoa2112435 |
[13] |
Tewari KS, Monk BJ, Vergote I, et al. Survival with cemiplimab in recurrent cervical cancer[J]. N Engl J Med, 2022, 386(6): 544-555. DOI: 10.1056/NEJMoa2112187.
doi: 10.1056/NEJMoa2112187 |
[14] |
Baruch EN, Youngster I, Ben-Betzalel G, et al. Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients[J]. Science, 2021, 371(6529): 602-609. DOI: 10.1126/science.abb5920.
doi: 10.1126/science.abb5920 pmid: 33303685 |
[15] |
Davar D, Dzutsev AK, McCulloch JA, et al. Fecal microbiota transplant overcomes resistance to anti-PD-1 therapy in melanoma patients[J]. Science, 2021, 371(6529): 595-602. DOI: 10.1126/science.abf3363.
doi: 10.1126/science.abf3363 pmid: 33542131 |
[16] |
Matson V, Fessler J, Bao R, et al. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients[J]. Science, 2018, 359(6371): 104-108. DOI: 10.1126/science.aao3290.
doi: 10.1126/science.aao3290 pmid: 29302014 |
[17] |
Sims TT, El Alam MB, Karpinets TV, et al. Gut microbiome diversity is an independent predictor of survival in cervical cancer patients receiving chemoradiation[J]. Commun Biol, 2021, 4(1): 237. DOI: 10.1038/s42003-021-01741-x.
doi: 10.1038/s42003-021-01741-x pmid: 33619320 |
[18] |
Che Y, Yang Y, Suo J, et al. Induction of systemic immune responses and reversion of immunosuppression in the tumor microenvironment by a therapeutic vaccine for cervical cancer[J]. Cancer Immunol Immunother, 2020, 69(12): 2651-2664. DOI: 10.1007/s00262-020-02651-3.
doi: 10.1007/s00262-020-02651-3 |
[19] |
Che Y, Fu S, Wang H, et al. Correlation of the gut microbiota and antitumor immune responses induced by a human papillomavirus therapeutic vaccine[J]. ACS Infect Dis, 2022, 8(12): 2494-2504. DOI: 10.1021/acsinfecdis.2c00305.
doi: 10.1021/acsinfecdis.2c00305 pmid: 36342280 |
[20] |
Abdolalipour E, Mahooti M, Gorji A, et al. Synergistic therapeutic effects of probiotic Lactobacillus casei TD-2 consumption on GM-CSF-induced immune responses in a murine model of cervical cancer[J]. Nutr Cancer, 2022, 74(1): 372-382. DOI: 10.1080/01635581.2020.1865419.
doi: 10.1080/01635581.2020.1865419 |
[21] |
Abdolalipour E, Mahooti M, Salehzadeh A, et al. Evaluation of the antitumor immune responses of probiotic Bifidobacterium bifidum in human papillomavirus-induced tumor model[J]. Microb Pathog, 2020, 145: 104207. DOI: 10.1016/j.micpath.2020.104207.
doi: 10.1016/j.micpath.2020.104207 |
[22] |
Fernandes A, Oliveira A, Soares R, et al. The effects of ionizing radiation on gut microbiota, a systematic review[J]. Nutrients, 2021, 13(9): 3025. DOI: 10.3390/nu13093025.
doi: 10.3390/nu13093025 |
[23] |
Liu J, Liu C, Yue J. Radiotherapy and the gut microbiome: facts and fiction[J]. Radiat Oncol, 2021, 16(1): 9. DOI: 10.1186/s13014-020-01735-9.
doi: 10.1186/s13014-020-01735-9 pmid: 33436010 |
[24] |
Sims TT, Colbert LE, Karpinets T, et al. Compositional and temporal changes of the gut microbiome in women with cervical cancer undergoing chemoradiation: does it predict response?[J]. Gynecol Oncol, 2020, 159, SUPPLEMENT 1: 35-36. DOI: 10.1016/j.ygyno.2020.06.074.
doi: 10.1016/j.ygyno.2020.06.074 |
[25] |
Uribe-Herranz M, Rafail S, Beghi S, et al. Gut microbiota modulate dendritic cell antigen presentation and radiotherapy-induced antitumor immune response[J]. J Clin Invest, 2020, 130(1): 466-479. DOI: 10.1172/JCI124332.
doi: 10.1172/JCI124332 pmid: 31815742 |
[26] |
Cui M, Xiao H, Luo D, et al. Circadian rhythm shapes the gut microbiota affecting host radiosensitivity[J]. Int J Mol Sci, 2016, 17(11): 1786. DOI: 10.3390/ijms17111786.
doi: 10.3390/ijms17111786 |
[27] |
Demers M, Dagnault A, Desjardins J. A randomized double-blind controlled trial: impact of probiotics on diarrhea in patients treated with pelvic radiation[J]. Clin Nutr, 2014, 33(5): 761-767. DOI: 10.1016/j.clnu.2013.10.015.
doi: 10.1016/j.clnu.2013.10.015 pmid: 24200199 |
[28] |
Jian Y, Zhang D, Liu M, et al. The impact of gut microbiota on radiation-induced enteritis[J]. Front Cell Infect Microbiol, 2021, 11: 586392. DOI: 10.3389/fcimb.2021.586392.
doi: 10.3389/fcimb.2021.586392 |
[29] |
Wang Z, Wang Q, Wang X, et al. Gut microbial dysbiosis is associated with development and progression of radiation enteritis during pelvic radiotherapy[J]. J Cell Mol Med, 2019, 23(5): 3747-3756. DOI: 10.1111/jcmm.14289.
doi: 10.1111/jcmm.14289 pmid: 30908851 |
[30] |
Mitra A, Grossman Biegert GW, Delgado AY, et al. Microbial diversity and composition is associated with patient-reported toxicity during chemoradiation therapy for cervical cancer[J]. Int J Radiat Oncol Biol Phys, 2020, 107(1): 163-171. DOI: 10.1016/j.ijrobp.2019.12.040.
doi: 10.1016/j.ijrobp.2019.12.040 |
[31] |
Bai J, Barandouzi ZA, Rowcliffe C, et al. Gut microbiome and its associations with acute and chronic gastrointestinal toxicities in cancer patients with pelvic radiation therapy: a systematic review[J]. Front Oncol, 2021, 11: 745262. DOI: 10.3389/fonc.2021.745262.
doi: 10.3389/fonc.2021.745262 |
[1] | Qian Xiaotao, Shi Ziyi, Hu Ge, Wu Xiaowei. Efficacy of consolidation chemotherapy after radical radiotherapy and chemotherapy for stage Ⅲ-ⅣA esophageal squamous cell carcinoma: a real-world clinical study [J]. Journal of International Oncology, 2024, 51(6): 326-331. |
[2] | Yang Mi, Bie Jun, Zhang Jiayong, Deng Jiaxiu, Tang Zuge, Lu Jun. Analysis of the efficacy and prognosis of neoadjuvant therapy for locally advanced resectable esophageal cancer [J]. Journal of International Oncology, 2024, 51(6): 332-337. |
[3] | Xu Fenglin, Wu Gang. Research progress of EBV in tumor immune microenvironment and immunotherapy of nasopharyngeal carcinoma [J]. Journal of International Oncology, 2024, 51(6): 359-363. |
[4] | Zhang Rui, Chu Yanliu. Research progress of colorectal cancer risk assessment models based on FIT and gut microbiota [J]. Journal of International Oncology, 2024, 51(6): 370-375. |
[5] | Gao Fan, Wang Ping, Du Chao, Chu Yanliu. Research progress on intestinal flora and non-surgical treatment of the colorectal cancer [J]. Journal of International Oncology, 2024, 51(6): 376-381. |
[6] | Fan Zhipeng, Yu Jing, Hu Jing, Liao Zhengkai, Xu Yu, Ouyang Wen, Xie Conghua. Predictive value of changes in inflammatory markers for prognosis in patients with advanced non-small cell lung cancer treated with the first-line immunotherapy plus chemotherapy [J]. Journal of International Oncology, 2024, 51(5): 257-266. |
[7] | Zhang Ningning, Yang Zhe, Tan Limei, Li Zhenning, Wang Di, Wei Yongzhi. Diagnostic value of cervical cell DNA ploidy analysis combined with B7-H4 and PKCδ for cervical cancer [J]. Journal of International Oncology, 2024, 51(5): 286-291. |
[8] | Yang Hao, Shi Guidong, Zhang Chengcheng, Zhang Yue, Zhang Liwen, Fu Maoyong. Comparison of efficacy and safety between sintilimab and tislelizumab in neoadjuvant therapy for advanced esophageal squamous cell carcinoma [J]. Journal of International Oncology, 2024, 51(4): 210-216. |
[9] | Sa Qiang, Xu Hangcheng, Wang Jiayu. Advances in immunotherapy for breast cancer [J]. Journal of International Oncology, 2024, 51(4): 227-234. |
[10] | Sun Weiwei, Yao Xuemin, Wang Pengjian, Wang Jing, Jia Jinghao. Exploration of prognostic factors and nomogram construction for advanced non-small cell lung cancer treated with immunotherapy based on hematologic indexes [J]. Journal of International Oncology, 2024, 51(3): 143-150. |
[11] | Qian Xiaotao, Shi Ziyi, Hu Ge. A real-world clinical study of immunocheckpoint inhibitor maintenance therapy after radical radiotherapy and chemotherapy in stage Ⅲ-ⅣA esophageal squamous cell carcinoma [J]. Journal of International Oncology, 2024, 51(3): 151-156. |
[12] | Liu Yulan, Jing Haiyan, Sun Jing, Song Wei, Sha Dan. Advances in predicting efficacy and prognostic markers of immunotherapy for gastric cancer [J]. Journal of International Oncology, 2024, 51(3): 175-180. |
[13] | Cui Tenglu, Lyu lu, Sun Pengfei. Application of radiotherapy combined with immunotherapy in the treatment of head and neck squamous cell carcinoma [J]. Journal of International Oncology, 2023, 50(9): 548-552. |
[14] | Zhang Lu, Jiang Hua, Lin Zhou, Ma Chenying, Xu Xiaoting, Wang Lili, Zhou Juying. Analysis of curative effect and prognosis of immune checkpoint inhibitor in the treatment of recurrent and metastatic cervical cancer [J]. Journal of International Oncology, 2023, 50(8): 475-483. |
[15] | Guo Ciliang, Jiang Chunping, Wu Junhua. Gut microbiome and tumor immunotherapy [J]. Journal of International Oncology, 2023, 50(7): 432-436. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||