Journal of International Oncology ›› 2023, Vol. 50 ›› Issue (7): 432-436.doi: 10.3760/cma.j.cn371439-20230413-00083
• Reviews • Previous Articles Next Articles
Guo Ciliang1,2, Jiang Chunping1,2, Wu Junhua1,2()
Received:
2023-04-13
Revised:
2023-06-13
Online:
2023-07-08
Published:
2023-08-03
Contact:
Wu Junhua,Email: Supported by:
Guo Ciliang, Jiang Chunping, Wu Junhua. Gut microbiome and tumor immunotherapy[J]. Journal of International Oncology, 2023, 50(7): 432-436.
[1] |
Bagchi S, Yuan R, Engleman EG. Immune checkpoint inhibitors for the treatment of cancer: clinical impact and mechanisms of response and resistance[J]. Annu Rev Pathol, 2021, 16: 223-249. DOI: 10.1146/annurev-pathol-042020-042741.
doi: 10.1146/annurev-pathol-042020-042741 pmid: 33197221 |
[2] |
Hegde PS, Chen DS. Top 10 challenges in cancer immunotherapy[J]. Immunity, 2020, 52(1): 17-35. DOI: 10.1016/j.immuni.2019.12.011.
doi: S1074-7613(19)30530-8 pmid: 31940268 |
[3] |
Jiménez-Saiz R, Anipindi VC, Galipeau H, et al. Microbial regulation of enteric eosinophils and its impact on tissue remodeling and Th2 immunity[J]. Front Immunol, 2020, 11: 155. DOI: 10.3389/fimmu.2020.00155.
doi: 10.3389/fimmu.2020.00155 pmid: 32117293 |
[4] |
Roviello G, Iannone LF, Bersanelli M, et al. The gut microbiome and efficacy of cancer immunotherapy[J]. Pharmacol Ther, 2022, 231: 107973. DOI: 10.1016/j.pharmthera.2021.107973.
doi: 10.1016/j.pharmthera.2021.107973 |
[5] |
Cheng WY, Wu CY, Yu J. The role of gut microbiota in cancer treatment: friend or foe?[J]. Gut, 2020, 69(10): 1867-1876. DOI: 10.1136/gutjnl-2020-321153.
doi: 10.1136/gutjnl-2020-321153 pmid: 32759302 |
[6] |
Gopalakrishnan V, Spencer CN, Nezi L, et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients[J]. Science, 2018, 359(6371): 97-103. DOI: 10.1126/science.aan4236.
doi: 10.1126/science.aan4236 pmid: 29097493 |
[7] |
Yuan Z, Li Y, Zhang S, et al. Extracellular matrix remodeling in tumor progression and immune escape: from mechanisms to treatments[J]. Mol Cancer, 2023, 22(1): 48. DOI: 10.1186/s12943-023-01744-8.
doi: 10.1186/s12943-023-01744-8 pmid: 36906534 |
[8] |
Zhang Y, Zhang Z. The history and advances in cancer immunotherapy: understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications[J]. Cell Mol Immunol, 2020, 17(8): 807-821. DOI: 10.1038/s41423-020-0488-6.
doi: 10.1038/s41423-020-0488-6 pmid: 32612154 |
[9] |
Simpson RC, Shanahan ER, Batten M, et al. Diet-driven microbial ecology underpins associations between cancer immunotherapy outcomes and the gut microbiome[J]. Nat Med, 2022, 28(11): 2344-2352. DOI: 10.1038/s41591-022-01965-2.
doi: 10.1038/s41591-022-01965-2 pmid: 36138151 |
[10] |
Wang Y, Zhang H, Liu C, et al. Immune checkpoint modulators in cancer immunotherapy: recent advances and emerging concepts[J]. J Hematol Oncol, 2022, 15(1): 111. DOI: 10.1186/s13045-022-01325-0.
doi: 10.1186/s13045-022-01325-0 |
[11] |
Derosa L, Hellmann MD, Spaziano M, et al. Negative association of antibiotics on clinical activity of immune checkpoint inhibitors in patients with advanced renal cell and non-small-cell lung cancer[J]. Ann Oncol, 2018, 29(6): 1437-1444. DOI: 10.1093/annonc/mdy103.
doi: S0923-7534(19)34893-8 pmid: 29617710 |
[12] |
Baruch EN, Youngster I, Ben-Betzalel G, et al. Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients[J]. Science, 2021, 371(6529): 602-609. DOI: 10.1126/science.abb5920.
doi: 10.1126/science.abb5920 pmid: 33303685 |
[13] |
Kawanabe-Matsuda H, Takeda K, Nakamura M, et al. Dietary lactobacillus-derived exopolysaccharide enhances immune-checkpoint blockade therapy[J]. Cancer Discov, 2022, 12(5): 1336-1355. DOI: 10.1158/2159-8290.CD-21-0929.
doi: 10.1158/2159-8290.CD-21-0929 pmid: 35180303 |
[14] |
Shi L, Sheng J, Chen G, et al. Combining IL-2-based immunotherapy with commensal probiotics produces enhanced antitumor immune response and tumor clearance[J]. J Immunother Cancer, 2020, 8(2): e000973. DOI: 10.1136/jitc-2020-000973.
doi: 10.1136/jitc-2020-000973 |
[15] |
Zhang SL, Mao YQ, Zhang ZY, et al. Pectin supplement significantly enhanced the anti-PD-1 efficacy in tumor-bearing mice humanized with gut microbiota from patients with colorectal cancer[J]. Theranostics, 2021, 11(9): 4155-4170. DOI: 10.7150/thno.54476.
doi: 10.7150/thno.54476 |
[16] |
He Y, Fu L, Li Y, et al. Gut microbial metabolites facilitate anticancer therapy efficacy by modulating cytotoxic CD8+ T cell immunity[J]. Cell Metab, 2021, 33(5): 988-1000.e7. DOI: 10.1016/j.cmet.2021.03.002.
doi: 10.1016/j.cmet.2021.03.002 |
[17] |
Mager LF, Burkhard R, Pett N, et al. Microbiome-derived inosine modulates response to checkpoint inhibitor immunotherapy[J]. Science, 2020, 369(6510): 1481-1489. DOI: 10.1126/science.abc3421.
doi: 10.1126/science.abc3421 pmid: 32792462 |
[18] |
Lee SH, Cho SY, Yoon Y, et al. Bifidobacterium bifidum strains synergize with immune checkpoint inhibitors to reduce tumour burden in mice[J]. Nat Microbiol, 2021, 6(3): 277-288. DOI: 10.1038/s41564-020-00831-6.
doi: 10.1038/s41564-020-00831-6 |
[19] |
Wang H, Rong X, Zhao G, et al. The microbial metabolite trime-thylamine N-oxide promotes antitumor immunity in triple-negative breast cancer[J]. Cell Metab, 2022, 34(4): 581-594.e8. DOI: 10.1016/j.cmet.2022.02.010.
doi: 10.1016/j.cmet.2022.02.010 pmid: 35278352 |
[20] |
Holstein SA, Lunning MA. CAR T-cell therapy in hematologic malignancies: a voyage in progress[J]. Clin Pharmacol Ther, 2020, 107(1): 112-122. DOI: 10.1002/cpt.1674.
doi: 10.1002/cpt.1674 pmid: 31622496 |
[21] |
Uribe-Herranz M, Bittinger K, Rafail S, et al. Gut microbiota modulates adoptive cell therapy via CD8α dendritic cells and IL-12[J]. JCI Insight, 2018, 3(4): e94952. DOI: 10.1172/jci.insight.94952.
doi: 10.1172/jci.insight.94952 |
[22] |
Smith M, Dai A, Ghilardi G, et al. Gut microbiome correlates of response and toxicity following anti-CD19 CAR T cell therapy[J]. Nat Med, 2022, 28(4): 713-723. DOI: 10.1038/s41591-022-01702-9.
doi: 10.1038/s41591-022-01702-9 pmid: 35288695 |
[23] |
Stein-Thoeringer CK, Saini NY, Zamir E, et al. A non-antibiotic-disrupted gut microbiome is associated with clinical responses to CD19-CAR-T cell cancer immunotherapy[J]. Nat Med, 2023, 29(4): 906-916. DOI: 10.1038/s41591-023-02234-6.
doi: 10.1038/s41591-023-02234-6 pmid: 36914893 |
[24] |
Yang D, Wang X, Zhou X, et al. Blood microbiota diversity determines response of advanced colorectal cancer to chemotherapy combined with adoptive T cell immunotherapy[J]. Oncoimmunology, 2021, 10(1): 1976953. DOI: 10.1080/2162402X.2021.1976953.
doi: 10.1080/2162402X.2021.1976953 |
[25] |
Matson V, Fessler J, Bao R, et al. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients[J]. Science, 2018, 359(6371): 104-108. DOI: 10.1126/science.aao3290.
doi: 10.1126/science.aao3290 pmid: 29302014 |
[26] |
Davar D, Dzutsev AK, McCulloch JA, et al. Fecal microbiota transplant overcomes resistance to anti-PD-1 therapy in melanoma patients[J]. Science, 2021, 371(6529): 595-602. DOI: 10.1126/science.abf3363.
doi: 10.1126/science.abf3363 pmid: 33542131 |
[27] |
Elkrief A, Routy B. First clinical proof-of-concept that FMT can overcome resistance to ICIs[J]. Nat Rev Clin Oncol, 2021, 18(6): 325-326. DOI: 10.1038/s41571-021-00502-3.
doi: 10.1038/s41571-021-00502-3 pmid: 33742164 |
[28] |
Ianiro G, Rossi E, Thomas AM, et al. Faecal microbiota transplantation for the treatment of diarrhoea induced by tyrosine-kinase inhibitors in patients with metastatic renal cell carcinoma[J]. Nat Commun, 2020, 11(1): 4333. DOI: 10.1038/s41467-020-18127-y.
doi: 10.1038/s41467-020-18127-y pmid: 32859933 |
[29] |
Holvoet T, Joossens M, Vázquez-Castellanos JF, et al. Fecal microbiota transplantation reduces symptoms in some patients with irritable bowel syndrome with predominant abdominal bloating: short- and long-term results from a placebo-controlled randomized trial[J]. Gastroenterology, 2021, 160(1): 145-157.e8. DOI: 10.1053/j.gastro.2020.07.013.
doi: 10.1053/j.gastro.2020.07.013 pmid: 32681922 |
[30] |
Snigdha S, Ha K, Tsai P, et al. Probiotics: potential novel therapeutics for microbiota-gut-brain axis dysfunction across gender and lifespan[J]. Pharmacol Ther, 2022, 231: 107978. DOI: 10.1016/j.pharmthera.2021.107978.
doi: 10.1016/j.pharmthera.2021.107978 |
[31] |
Griffin ME, Espinosa J, Becker JL, et al. Enterococcus peptidoglycan remodeling promotes checkpoint inhibitor cancer immunotherapy[J]. Science, 2021, 373(6558): 1040-1046. DOI: 10.1126/science.abc9113.
doi: 10.1126/science.abc9113 pmid: 34446607 |
[32] |
Tanoue T, Morita S, Plichta DR, et al. A defined commensal consortium elicits CD8 T cells and anti-cancer immunity[J]. Nature, 2019, 565(7741): 600-605. DOI: 10.1038/s41586-019-0878-z.
doi: 10.1038/s41586-019-0878-z |
[33] |
Dizman N, Meza L, Bergerot P, et al. Nivolumab plus ipilimumab with or without live bacterial supplementation in metastatic renal cell carcinoma: a randomized phase 1 trial[J]. Nat Med, 2022, 28(4): 704-712. DOI: 10.1038/s41591-022-01694-6.
doi: 10.1038/s41591-022-01694-6 pmid: 35228755 |
[34] |
Tomita Y, Goto Y, Sakata S, et al. Clostridium butyricum therapy restores the decreased efficacy of immune checkpoint blockade in lung cancer patients receiving proton pump inhibitors[J]. Oncoimmunology, 2022, 11(1): 2081010. DOI: 10.1080/2162402X.2022.2081010.
doi: 10.1080/2162402X.2022.2081010 |
[35] |
Perler BK, Friedman ES, Wu GD. The role of the gut microbiota in the relationship between diet and human health[J]. Annu Rev Physiol, 2023, 85: 449-468. DOI: 10.1146/annurev-physiol-031522-092054.
doi: 10.1146/annurev-physiol-031522-092054 |
[36] |
Gutierrez Lopez DE, Lashinger LM, Weinstock GM, et al. Circadian rhythms and the gut microbiome synchronize the host's metabolic response to diet[J]. Cell Metab, 2021, 33(5): 873-887. DOI: 10.1016/j.cmet.2021.03.015.
doi: 10.1016/j.cmet.2021.03.015 pmid: 33789092 |
[37] |
Coutzac C, Jouniaux JM, Paci A, et al. Systemic short chain fatty acids limit antitumor effect of CTLA-4 blockade in hosts with cancer[J]. Nat Commun, 2020, 11(1): 2168. DOI: 10.1038/s41467-020-16079-x.
doi: 10.1038/s41467-020-16079-x |
[38] |
Zheng DW, Li RQ, An JX, et al. Prebiotics-encapsulated probiotic spores regulate gut microbiota and suppress colon cancer[J]. Adv Mater, 2020, 32(45): e2004529. DOI: 10.1002/adma.202004529.
doi: 10.1002/adma.202004529 |
[39] |
Huang J, Liu D, Wang Y, et al. Ginseng polysaccharides alter the gut microbiota and kynurenine/tryptophan ratio, potentiating the antitumour effect of antiprogrammed cell death 1/programmed cell death ligand 1 (anti-PD-1/PD-L1) immunotherapy[J]. Gut, 2022, 71(4): 734-745. DOI: 10.1136/gutjnl-2020-321031.
doi: 10.1136/gutjnl-2020-321031 |
[40] |
Han K, Nam J, Xu J, et al. Generation of systemic antitumour immunity via the in situ modulation of the gut microbiome by an orally administered inulin gel[J]. Nat Biomed Eng, 2021, 5(11): 1377-1388. DOI: 10.1038/s41551-021-00749-2.
doi: 10.1038/s41551-021-00749-2 pmid: 34168321 |
[41] |
Messaoudene M, Pidgeon R, Richard C, et al. A natural polyphenol exerts antitumor activity and circumvents anti-PD-1 resistance through effects on the gut microbiota[J]. Cancer Discov, 2022, 12(4): 1070-1087. DOI: 10.1158/2159-8290.CD-21-0808.
doi: 10.1158/2159-8290.CD-21-0808 pmid: 35031549 |
[42] |
Spencer CN, McQuade JL, Gopalakrishnan V, et al. Dietary fiber and probiotics influence the gut microbiome and melanoma immunotherapy response[J]. Science, 2021, 374(6575): 1632-1640. DOI: 10.1126/science.aaz7015.
doi: 10.1126/science.aaz7015 pmid: 34941392 |
[1] | Liu Na, Kou Jieli, Yang Feng, Liu Taotao, Li Danping, Han Junrui, Yang Lizhou. Clinical value of serum miR-106b-5p and miR-760 combined with low-dose spiral CT in the diagnosis of early lung cancer [J]. Journal of International Oncology, 2024, 51(6): 321-325. |
[2] | Yang Mi, Bie Jun, Zhang Jiayong, Deng Jiaxiu, Tang Zuge, Lu Jun. Analysis of the efficacy and prognosis of neoadjuvant therapy for locally advanced resectable esophageal cancer [J]. Journal of International Oncology, 2024, 51(6): 332-337. |
[3] | Yuan Jian, Huang Yanhua. Diagnostic value of Hp-IgG antibody combined with serum DKK1 and sB7-H3 in early gastric cancer [J]. Journal of International Oncology, 2024, 51(6): 338-343. |
[4] | Chen Hongjian, Zhang Suqing. Study on the relationship between serum miR-24-3p, H2AFX and clinical pathological features and postoperative recurrence in liver cancer patients [J]. Journal of International Oncology, 2024, 51(6): 344-349. |
[5] | Guo Zehao, Zhang Junwang. Role of PFDN and its subunits in tumorigenesis and tumor development [J]. Journal of International Oncology, 2024, 51(6): 350-353. |
[6] | Zhang Baihong, Yue Hongyun. Advances in anti-tumor drugs with new mechanisms of action [J]. Journal of International Oncology, 2024, 51(6): 354-358. |
[7] | Xu Fenglin, Wu Gang. Research progress of EBV in tumor immune microenvironment and immunotherapy of nasopharyngeal carcinoma [J]. Journal of International Oncology, 2024, 51(6): 359-363. |
[8] | Wang Ying, Liu Nan, Guo Bing. Advances of antibody-drug conjugate in the therapy of metastatic breast cancer [J]. Journal of International Oncology, 2024, 51(6): 364-369. |
[9] | Zhang Rui, Chu Yanliu. Research progress of colorectal cancer risk assessment models based on FIT and gut microbiota [J]. Journal of International Oncology, 2024, 51(6): 370-375. |
[10] | Gao Fan, Wang Ping, Du Chao, Chu Yanliu. Research progress on intestinal flora and non-surgical treatment of the colorectal cancer [J]. Journal of International Oncology, 2024, 51(6): 376-381. |
[11] | Fan Zhipeng, Yu Jing, Hu Jing, Liao Zhengkai, Xu Yu, Ouyang Wen, Xie Conghua. Predictive value of changes in inflammatory markers for prognosis in patients with advanced non-small cell lung cancer treated with the first-line immunotherapy plus chemotherapy [J]. Journal of International Oncology, 2024, 51(5): 257-266. |
[12] | Liu Jing, Liu Qin, Huang Mei. Prognostic model construction of lung infection in patients with chemoradiotherapy for esophageal cancer based on SMOTE algorithm [J]. Journal of International Oncology, 2024, 51(5): 267-273. |
[13] | Yang Lin, Lu Ning, Wen Hua, Zhang Mingxin, Zhu Lin. Study on the clinical relationship between inflammatory burden index and gastric cancer [J]. Journal of International Oncology, 2024, 51(5): 274-279. |
[14] | Wang Junyi, Hong Kaibin, Ji Rongjia, Chen Dachao. Effect of cancer nodules on liver metastases after radical resection of colorectal cancer [J]. Journal of International Oncology, 2024, 51(5): 280-285. |
[15] | Zhang Ningning, Yang Zhe, Tan Limei, Li Zhenning, Wang Di, Wei Yongzhi. Diagnostic value of cervical cell DNA ploidy analysis combined with B7-H4 and PKCδ for cervical cancer [J]. Journal of International Oncology, 2024, 51(5): 286-291. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||