Journal of International Oncology ›› 2024, Vol. 51 ›› Issue (6): 354-358.doi: 10.3760/cma.j.cn371439-20240318-00061
• Reviews • Previous Articles Next Articles
Zhang Baihong1, Yue Hongyun2()
Received:
2024-03-18
Revised:
2024-04-21
Online:
2024-06-08
Published:
2024-06-28
Contact:
Yue Hongyun, Email: Supported by:
Zhang Baihong, Yue Hongyun. Advances in anti-tumor drugs with new mechanisms of action[J]. Journal of International Oncology, 2024, 51(6): 354-358.
[1] |
Scott EC, Baines AC, Gong YT, et al. Trends in the approval of cancer therapies by the FDA in the twenty-first century[J]. Nat Rev Drug Discov, 2023, 22(8): 625-640. DOI: 10.1038/s41573-023-00723-4.
pmid: 37344568 |
[2] |
Micalizzi DS, Sequist LV, Haber DA. Deploying blood-based cancer screening[J]. Science, 2024, 383(6681): 368-370. DOI: 10.1126/science.adk1213.
pmid: 38271495 |
[3] |
Bedard PL, Hyman DM, Davids MS, et al. Small molecules, big impact: 20 years of targeted therapy in oncology[J]. Lancet, 2020, 395(10229): 1078-1088. DOI: 10.1016/S0140-6736(20)30164-1.
pmid: 32222192 |
[4] |
Morrison L, Loibl S, Turner NC. The CDK4/6 inhibitor revolu-tion—a game-changing era for breast cancer treatment[J]. Nat Rev Clin Oncol, 2024, 21(2): 89-105. DOI: 10.1038/s41571-023-00840-4.
pmid: 38082107 |
[5] | Milletti G, Colicchia V, Cecconi F. Cyclers' kinases in cell division: from molecules to cancer therapy[J]. Cell Death Differ, 2023, 30(9): 2035-2052. DOI: 10.1038/s41418-023-01196-z. |
[6] |
Gao JX, Pickett HA. Targeting telomeres: advances in telomere maintenance mechanism-specific cancer therapies[J]. Nat Rev Cancer, 2022, 22(9): 515-532. DOI: 10.1038/s41568-022-00490-1.
pmid: 35790854 |
[7] | Davalos V, Esteller M. Cancer epigenetics in clinical practice[J]. CA Cancer J Clin, 2023, 73(4): 376-424. DOI: 10.3322/caac.21765. |
[8] | Deng XL, Qing Y, Horne D, et al. The roles and implications of RNA m6A modification in cancer[J]. Nat Rev Clin Oncol, 2023, 20(8): 507-526. DOI: 10.1038/s41571-023-00774-x. |
[9] | Fustin JM, Kojima R, Itoh K, et al. Two Ck1δ transcripts regulated by m6A methylation code for two antagonistic kinases in the control of the circadian clock[J]. Proc Natl Acad Sci U S A, 2018, 115(23): 5980-5985. DOI: 10.1073/pnas.1721371115. |
[10] | Vainonen JP, Momeny M, Westermarck J. Druggable cancer phosphatases[J]. Sci Transl Med, 2021, 13(588): eabe2967. DOI: 10.1126/scitranslmed.abe2967. |
[11] |
Carter PJ, Rajpal A. Designing antibodies as therapeutics[J]. Cell, 2022, 185(15): 2789-2805. DOI: 10.1016/j.cell.2022.05.029.
pmid: 35868279 |
[12] |
Galvez-Cancino F, Simpson AP, Costoya C, et al. Fcγ receptors and immunomodulatory antibodies in cancer[J]. Nat Rev Cancer, 2024, 24(1): 51-71. DOI: 10.1038/s41568-023-00637-8.
pmid: 38062252 |
[13] |
Kontermann RE, Brinkmann U. Bispecific antibodies[J]. Drug Discov Today, 2015, 20(7): 838-847. DOI: 10.1016/j.drudis.2015.02.008.
pmid: 25728220 |
[14] |
Weidanz J. Targeting cancer with bispecific antibodies[J]. Science, 2021, 371(6533): 996-997. DOI: 10.1126/science.abg5568.
pmid: 33649167 |
[15] | Anon. An NK-cell therapy for CD30+ lymphomas[J]. Cancer Discov, 2022, 12(6): 1401-1402. DOI: 10.1158/2159-8290.CD-NB2022-0027. |
[16] | Hurvitz SA. Recent progress in antibody-drug conjugate therapy for cancer[J]. Nat Cancer, 2022, 3(12): 1412-1413. DOI: 10.1038/s43018-022-00495-7. |
[17] | Tarantino P, Carmagnani Pestana R, Corti C, et al. Antibody-drug conjugates: smart chemotherapy delivery across tumor histologies[J]. CA Cancer J Clin, 2022, 72(2): 165-182. DOI: 10.3322/caac.21705. |
[18] |
Tarantino P, Ricciuti B, Pradhan SM, et al. Optimizing the safety of antibody-drug conjugates for patients with solid tumours[J]. Nat Rev Clin Oncol, 2023, 20(8): 558-576. DOI: 10.1038/s41571-023-00783-w.
pmid: 37296177 |
[19] |
Kulkarni JA, Witzigmann D, Thomson SB, et al. The current landscape of nucleic acid therapeutics[J]. Nat Nanotechnol, 2021, 16(6): 630-643. DOI: 10.1038/s41565-021-00898-0.
pmid: 34059811 |
[20] |
Liu C, Shi QQ, Huang XA, et al. mRNA-based cancer therapeutics[J]. Nat Rev Cancer, 2023, 23(8): 526-543. DOI: 10.1038/s41568-023-00586-2.
pmid: 37311817 |
[21] | Winkle M, El-Daly SM, Fabbri M, et al. Noncoding RNA therapeutics-challenges and potential solutions[J]. Nat Rev Drug Discov, 2021, 20(8): 629-651. DOI: 10.1038/s41573-021-00219-z. |
[22] |
Childs-Disney JL, Yang XY, Gibaut QMR, et al. Targeting RNA structures with small molecules[J]. Nat Rev Drug Discov, 2022, 21(10): 736-762. DOI: 10.1038/s41573-022-00521-4.
pmid: 35941229 |
[23] | Wang JY, Doudna JA. CRISPR technology: a decade of genome editing is only the beginning[J]. Science, 2023, 379(6629): eadd8643. DOI: 10.1126/science.add8643. |
[24] |
Saxena M, van der Burg SH, Melief CJM, et al. Therapeutic cancer vaccines[J]. Nat Rev Cancer, 2021, 21(6): 360-378. DOI: 10.1038/s41568-021-00346-0.
pmid: 33907315 |
[25] |
Blass E, Ott PA. Advances in the development of personalized neoantigen-based therapeutic cancer vaccines[J]. Nat Rev Clin Oncol, 2021, 18(4): 215-229. DOI: 10.1038/s41571-020-00460-2.
pmid: 33473220 |
[26] |
Dolgin E. Personalized cancer vaccines pass first major clinical test[J]. Nat Rev Drug Discov, 2023, 22(8): 607-609. DOI: 10.1038/d41573-023-00118-5.
pmid: 37438497 |
[27] | Adamik J, Butterfield LH. What's next for cancer vaccines[J]. Sci Transl Med, 2022, 14(670): eabo4632. DOI: 10.1126/scitranslmed.abo4632. |
[28] |
Sellars MC, Wu CJ, Fritsch EF. Cancer vaccines: building a bridge over troubled waters[J]. Cell, 2022, 185(15): 2770-2788. DOI: 10.1016/j.cell.2022.06.035.
pmid: 35835100 |
[29] |
Lang F, Schrörs B, Löwer M, et al. Identification of neoantigens for individualized therapeutic cancer vaccines[J]. Nat Rev Drug Discov, 2022, 21(4): 261-282. DOI: 10.1038/s41573-021-00387-y.
pmid: 35105974 |
[30] |
Irvine DJ, Maus MV, Mooney DJ, et al. The future of engineered immune cell therapies[J]. Science, 2022, 378(6622): 853-858. DOI: 10.1126/science.abq6990.
pmid: 36423279 |
[31] | Baker DJ, Arany Z, Baur JA, et al. CAR T therapy beyond cancer: the evolution of a living drug[J]. Nature, 2023, 619(7971): 707-715. DOI: 10.1038/s41586-023-06243-w. |
[32] |
Lahimchi MR, Maroufi F, Maali A. Induced pluripotent stem cell-derived chimeric antigen receptor T cells: the intersection of stem cells and immunotherapy[J]. Cell Reprogram, 2023, 25(5): 195-211. DOI: 10.1089/cell.2023.0041.
pmid: 37782910 |
[33] |
Dagher OK, Posey ADJ. Forks in the road for CAR T and CAR NK cell cancer therapies[J]. Nat Immunol, 2023, 24(12): 1994-2007. DOI: 10.1038/s41590-023-01659-y.
pmid: 38012406 |
[34] |
Laskowski TJ, Biederstädt A, Rezvani K. Natural killer cells in antitumour adoptive cell immunotherapy[J]. Nat Rev Cancer, 2022, 22(10): 557-575. DOI: 10.1038/s41568-022-00491-0.
pmid: 35879429 |
[35] |
Lasser SA, Ozbay Kurt FG, Arkhypov I, et al. Myeloid-derived suppressor cells in cancer and cancer therapy[J]. Nat Rev Clin Oncol, 2024, 21(2): 147-164. DOI: 10.1038/s41571-023-00846-y.
pmid: 38191922 |
[36] | Baulu E, Gardet C, Chuvin N, et al. TCR-engineered T cell therapy in solid tumors: state of the art and perspectives[J]. Sci Adv, 2023, 9(7): eadf3700. DOI: 10.1126/sciadv.adf3700. |
[37] | Reardon S. MEGA-CRISPR tool gives a power boost to cancer-fighting cells[J]. Nature, 2024, 626(8001): 940. DOI: 10.1038/d41586-024-00511-z. |
[38] | Ornes S. News feature: what's the best way to build a molecular machine?[J]. Proc Natl Acad Sci U S A, 2018, 115(38): 9327-9330. DOI: 10.1073/pnas.1811689115. |
[39] | Schmidt CK, Medina-Sánchez M, Edmondson RJ, et al. Enginee-ring microrobots for targeted cancer therapies from a medical perspective[J]. Nat Commun, 2020, 11(1): 5618. DOI: 10.1038/s41467-020-19322-7. |
[40] | Gwisai T, Mirkhani N, Christiansen MG, et al. Magnetic torque-driven living microrobots for increased tumor infiltration[J]. Sci Robot, 2022, 7(71): eabo0665. DOI: 10.1126/scirobotics.abo0665. |
[41] | Zhang SL, Scott EY, Singh J, et al. The optoelectronic microrobot: a versatile toolbox for micromanipulation[J]. Proc Natl Acad Sci U S A, 2019, 116(30): 14823-14828. DOI: 10.1073/pnas.1903406116. |
[42] |
Ho D. Artificial intelligence in cancer therapy[J]. Science, 2020, 367(6481): 982-983. DOI: 10.1126/science.aaz3023.
pmid: 32108102 |
[43] |
Service RF. Software-designed miniproteins could create new class of drugs[J]. Science, 2022, 376(6588): 17. DOI: 10.1126/science.abq2804.
pmid: 35357932 |
[44] | Callaway E. AlphaFold found thousands of possible psychedelics. Will its predictions help drug discovery?[J]. Nature, 2024, 626(7997): 14-15. DOI: 10.1038/d41586-024-00130-8. |
[45] | Lampe GD, King RT, Halpin-Healy TS, et al. Targeted DNA integration in human cells without double-strand breaks using CRISPR-associated transposases[J]. Nat Biotechnol, 2024, 42(1): 87-98. DOI: 10.1038/s41587-023-01748-1. |
[46] | Tao F, Qi QL. Make more digital twins[J]. Nature, 2019, 573(7775): 490-491. DOI: 10.1038/d41586-019-02849-1. |
[47] | Mariño KV, Cagnoni AJ, Croci DO, et al. Targeting galectin-driven regulatory circuits in cancer and fibrosis[J]. Nat Rev Drug Discov, 2023, 22(4): 295-316. DOI: 10.1038/s41573-023-00636-2. |
[48] | Vogel FCE, Chaves-Filho AB, Schulze A. Lipids as mediators of cancer progression and metastasis[J]. Nat Cancer, 2024, 5(1): 16-29. DOI: 10.1038/s43018-023-00702-z. |
[49] | Stine ZE, Schug ZT, Salvino JM, et al. Targeting cancer metabolism in the era of precision oncology[J]. Nat Rev Drug Discov, 2022, 21(2): 141-162. DOI: 10.1038/s41573-021-00339-6. |
[50] |
Gurbatri CR, Arpaia N, Danino T. Engineering bacteria as interactive cancer therapies[J]. Science, 2022, 378(6622): 858-864. DOI: 10.1126/science.add9667.
pmid: 36423303 |
[51] |
Sajjath SM, Gola A, Fuchs E. Designer bugs as cancer drugs?[J]. Science, 2023, 380(6641): 132-133. DOI: 10.1126/science.adh3884.
pmid: 37053342 |
[52] | Erdmann J. How gut bacteria could boost cancer treatments[J]. Nature, 2022, 607(7919): 436-439. DOI: 10.1038/d41586-022-01959-7. |
[53] | Prillaman MK. How cancer hijacks the nervous system to grow and spread[J]. Nature, 2024, 626(7997): 22-24. DOI: 10.1038/d41586-024-00240-3. |
[54] | da Costa AABA, Chowdhury D, Shapiro GI, et al. Targeting replication stress in cancer therapy[J]. Nat Rev Drug Discov, 2023, 22(1): 38-58. DOI: 10.1038/s41573-022-00558-5. |
[55] | Pérez-González A, Bévant K, Blanpain C. Cancer cell plasticity during tumor progression, metastasis and response to therapy[J]. Nat Cancer, 2023, 4(8): 1063-1082. DOI: 10.1038/s43018-023-00595-y. |
[1] | Liu Na, Kou Jieli, Yang Feng, Liu Taotao, Li Danping, Han Junrui, Yang Lizhou. Clinical value of serum miR-106b-5p and miR-760 combined with low-dose spiral CT in the diagnosis of early lung cancer [J]. Journal of International Oncology, 2024, 51(6): 321-325. |
[2] | Qian Xiaotao, Shi Ziyi, Hu Ge, Wu Xiaowei. Efficacy of consolidation chemotherapy after radical radiotherapy and chemotherapy for stage Ⅲ-ⅣA esophageal squamous cell carcinoma: a real-world clinical study [J]. Journal of International Oncology, 2024, 51(6): 326-331. |
[3] | Yang Mi, Bie Jun, Zhang Jiayong, Deng Jiaxiu, Tang Zuge, Lu Jun. Analysis of the efficacy and prognosis of neoadjuvant therapy for locally advanced resectable esophageal cancer [J]. Journal of International Oncology, 2024, 51(6): 332-337. |
[4] | Yuan Jian, Huang Yanhua. Diagnostic value of Hp-IgG antibody combined with serum DKK1 and sB7-H3 in early gastric cancer [J]. Journal of International Oncology, 2024, 51(6): 338-343. |
[5] | Chen Hongjian, Zhang Suqing. Study on the relationship between serum miR-24-3p, H2AFX and clinical pathological features and postoperative recurrence in liver cancer patients [J]. Journal of International Oncology, 2024, 51(6): 344-349. |
[6] | Guo Zehao, Zhang Junwang. Role of PFDN and its subunits in tumorigenesis and tumor development [J]. Journal of International Oncology, 2024, 51(6): 350-353. |
[7] | Xu Fenglin, Wu Gang. Research progress of EBV in tumor immune microenvironment and immunotherapy of nasopharyngeal carcinoma [J]. Journal of International Oncology, 2024, 51(6): 359-363. |
[8] | Wang Ying, Liu Nan, Guo Bing. Advances of antibody-drug conjugate in the therapy of metastatic breast cancer [J]. Journal of International Oncology, 2024, 51(6): 364-369. |
[9] | Zhang Rui, Chu Yanliu. Research progress of colorectal cancer risk assessment models based on FIT and gut microbiota [J]. Journal of International Oncology, 2024, 51(6): 370-375. |
[10] | Gao Fan, Wang Ping, Du Chao, Chu Yanliu. Research progress on intestinal flora and non-surgical treatment of the colorectal cancer [J]. Journal of International Oncology, 2024, 51(6): 376-381. |
[11] | Fan Zhipeng, Yu Jing, Hu Jing, Liao Zhengkai, Xu Yu, Ouyang Wen, Xie Conghua. Predictive value of changes in inflammatory markers for prognosis in patients with advanced non-small cell lung cancer treated with the first-line immunotherapy plus chemotherapy [J]. Journal of International Oncology, 2024, 51(5): 257-266. |
[12] | Liu Jing, Liu Qin, Huang Mei. Prognostic model construction of lung infection in patients with chemoradiotherapy for esophageal cancer based on SMOTE algorithm [J]. Journal of International Oncology, 2024, 51(5): 267-273. |
[13] | Yang Lin, Lu Ning, Wen Hua, Zhang Mingxin, Zhu Lin. Study on the clinical relationship between inflammatory burden index and gastric cancer [J]. Journal of International Oncology, 2024, 51(5): 274-279. |
[14] | Wang Junyi, Hong Kaibin, Ji Rongjia, Chen Dachao. Effect of cancer nodules on liver metastases after radical resection of colorectal cancer [J]. Journal of International Oncology, 2024, 51(5): 280-285. |
[15] | Zhang Ningning, Yang Zhe, Tan Limei, Li Zhenning, Wang Di, Wei Yongzhi. Diagnostic value of cervical cell DNA ploidy analysis combined with B7-H4 and PKCδ for cervical cancer [J]. Journal of International Oncology, 2024, 51(5): 286-291. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||