Journal of International Oncology ›› 2023, Vol. 50 ›› Issue (3): 186-190.doi: 10.3760/cma.j.cn371439-20221213-00037
• Reviews • Previous Articles Next Articles
Received:
2022-12-13
Revised:
2023-01-01
Online:
2023-03-08
Published:
2023-04-12
Contact:
Li Yuanfei, Email: Xu Liangfu, Li Yuanfei. Research progress on tumor microenvironment and immune combination therapy of MSS colorectal cancer[J]. Journal of International Oncology, 2023, 50(3): 186-190.
[1] |
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
doi: 10.3322/caac.21660 |
[2] |
Boukouris AE, Theochari M, Stefanou D, et al. Latest evidence on immune checkpoint inhibitors in metastatic colorectal cancer: a 2022 update[J]. Crit Rev Oncol Hematol, 2022, 173: 103663. DOI: 10.1016/j.critrevonc.2022.103663.
doi: 10.1016/j.critrevonc.2022.103663 |
[3] | Diaz LA Jr, Shiu KK, Kim TW, et al. Pembrolizumab versus chemotherapy for microsatellite instability-high or mismatch repair-deficient metastatic colorectal cancer (KEYNOTE-177): final analysis of a randomised, open-label, phase 3 study[J]. Lancet Oncol, 2022, 23(5): 659-670. DOI: 10.1016/S1470- 2045(22)00197-8. |
[4] |
Ganesh K. Optimizing immunotherapy for colorectal cancer[J]. Nat Rev Gastroenterol Hepatol, 2022, 19(2): 93-94. DOI: 10.1038/s41575-021-00569-4.
doi: 10.1038/s41575-021-00569-4 |
[5] |
Bejarano L, Jordāo MJC, Joyce JA. Therapeutic targeting of the tumor microenvironment[J]. Cancer Discov, 2021, 11(4): 933-959. DOI: 10.1158/2159-8290.CD-20-1808.
doi: 10.1158/2159-8290.CD-20-1808 pmid: 33811125 |
[6] |
Chen L, Jiang X, Li Y, et al. How to overcome tumor resistance to anti-PD-1/PD-L1 therapy by immunotherapy modifying the tumor microenvironment in MSS CRC[J]. Clin Immunol, 2022, 237: 108962. DOI: 10.1016/j.clim.2022.108962.
doi: 10.1016/j.clim.2022.108962 |
[7] |
郭龙, 孙永杰. T淋巴细胞亚群、NK细胞与结直肠癌患者病理分期的关系[J]. 航空航天医学杂志, 2022, 33(9): 1064-1067. DOI: 10.3969/j.issn.2095-1434.2022.09.015.
doi: 10.3969/j.issn.2095-1434.2022.09.015 |
[8] |
van der Veeken J, Campbell C, Pritykin Y, et al. Genetic tracing reveals transcription factor Foxp3-dependent and Foxp3-independent functionality of peripherally induced Treg cells[J]. Immunity, 2022, 55(7): 1173-1184. e7. DOI: 10.1016/j.immuni.2022.05.010.
doi: 10.1016/j.immuni.2022.05.010 pmid: 35700740 |
[9] |
Boissière-Michot F, Lazennec G, Frugier H, et al. Characterization of an adaptive immune response in microsatellite-instable colorectal cancer[J]. Oncoimmunology, 2014, 3(6): e29256. DOI: 10.4161/onci.29256.
doi: 10.4161/onci.29256 |
[10] |
Masuda K, Kornberg A, Miller J, et al. Multiplexed single-cell analysis reveals prognostic and nonprognostic T cell types in human colorectal cancer[J]. JCI Insight, 2022, 7(7): e154646. DOI: 10.1172/jci.insight.154646.
doi: 10.1172/jci.insight.154646 |
[11] | Wu D, Zhu Y. Role of kynurenine in promoting the generation of exhausted CD8+ T cells in colorectal cancer[J]. Am J Transl Res, 2021, 13(3): 1535-1547. |
[12] |
Zhang X, Liu X, Zhou W, et al. Blockade of IDO-kynurenine-AhR axis ameliorated colitis-associated colon cancer via inhibiting immune tolerance[J]. Cell Mol Gastroenterol Hepatol, 2021, 12(4): 1179-1199. DOI: 10.1016/j.jcmgh.2021.05.018.
doi: 10.1016/j.jcmgh.2021.05.018 pmid: 34087454 |
[13] |
Hegde S, Leader AM, Merad M. MDSC: markers, development, states, and unaddressed complexity[J]. Immunity, 2021, 54(5): 875-884. DOI: 10.1016/j.immuni.2021.04.004.
doi: 10.1016/j.immuni.2021.04.004 pmid: 33979585 |
[14] |
Yin K, Xia X, Rui K, et al. Myeloid-derived suppressor cells: a new and pivotal player in colorectal cancer progression[J]. Front Oncol, 2020, 10: 610104. DOI: 10.3389/fonc.2020.610104.
doi: 10.3389/fonc.2020.610104 |
[15] |
李奕建, 钟世彪, 陈利生. 外周血MDSC水平及NLR、PLR比值对结直肠癌患者临床预后评估的价值[J]. 中华细胞与干细胞杂志(电子版), 2019, 9(3): 149-153. DOI: 10.3877/cma.j.issn.2095-1221.2019.03.004.
doi: 10.3877/cma.j.issn.2095-1221.2019.03.004 |
[16] |
Bhat AA, Nisar S, Singh M, et al. Cytokine- and chemokine-induced inflammatory colorectal tumor microenvironment: emerging avenue for targeted therapy[J]. Cancer Commun (Lond), 2022, 42(8): 689-715. DOI: 10.1002/cac2.12295.
doi: 10.1002/cac2.12295 |
[17] |
Li S, Na R, Li X, et al. Targeting interleukin-17 enhances tumor response to immune checkpoint inhibitors in colorectal cancer[J]. Biochim Biophys Acta Rev Cancer, 2022, 1877(4): 188758. DOI: 10.1016/j.bbcan.2022.188758.
doi: 10.1016/j.bbcan.2022.188758 |
[18] |
Liu C, Liu R, Wang B, et al. Blocking IL-17a enhances tumor response to anti-PD-1 immunotherapy in microsatellite stable colorectal cancer[J]. J Immunother Cancer, 2021, 9(1): e001895. DOI: 10.1136/jitc-2020-001895.
doi: 10.1136/jitc-2020-001895 |
[19] |
Kim CG, Jang M, Kim Y, et al. VEGF-A drives TOX-dependent T cell exhaustion in anti-PD-1-resistant microsatellite stable colorectal cancers[J]. Sci Immunol, 2019, 4(41): eaay0555. DOI: 10.1126/sciimmunol.aay0555.
doi: 10.1126/sciimmunol.aay0555 |
[20] |
Sato H, Okonogi N, Nakano T. Rationale of combination of anti-PD-1/PD-L1 antibody therapy and radiotherapy for cancer treatment[J]. Int J Clin Oncol, 2020, 25(5): 801-809. DOI: 10.1007/s10147-020-01666-1.
doi: 10.1007/s10147-020-01666-1 pmid: 32246277 |
[21] |
Seyedin SN, Hasibuzzaman MM, Pham V, et al. Combination therapy with radiation and PARP inhibition enhances responsiveness to anti-PD-1 therapy in colorectal tumor models[J]. Int J Radiat Oncol Biol Phys, 2020, 108(1): 81-92. DOI: 10.1016/j.ijrobp.2020.01.030.
doi: 10.1016/j.ijrobp.2020.01.030 |
[22] |
Yang J, Zhou W, Ma Y, et al. The response of PD-1 inhibitor combined with radiotherapy and GM-CSF(PRaG) with or without IL-2 in microsatellite stable metastatic colorectal cancer: analysis of pooled data from two phase Ⅱ trials[J]. J Clin Oncol, 2022, 40(suppl 16): e15561. DOI: 10.1200/JCO.2022.40.16_suppl.e15561.
doi: 10.1200/JCO.2022.40.16_suppl.e15561 |
[23] |
Yang J, Bi F, Gou H. Complete pathologic response after concurrent treatment with pembrolizumab and radiotherapy in metastatic colorectal cancer: a case report[J]. Onco Targets Ther, 2021, 14: 2555-2561. DOI: 10.2147/OTT.S298333.
doi: 10.2147/OTT.S298333 |
[24] |
Guan Y, Kraus SG, Quaney MJ, et al. FOLFOX chemotherapy ameliorates CD8 T lymphocyte exhaustion and enhances checkpoint blockade efficacy in colorectal cancer[J]. Front Oncol, 2020, 10: 586. DOI: 10.3389/fonc.2020.00586.
doi: 10.3389/fonc.2020.00586 pmid: 32391270 |
[25] |
Men Q, Huang J, Duan Y, et al. PD-1 blockade combined chemotherapy and bevacizumab in DNA mismatch repair-proficient/microsatellite stable colorectal liver metastases[J]. J Clin Oncol, 2022, 40(suppl 16): e15547. DOI: 10.1200/JCO.2022.40.16_suppl.e15547.
doi: 10.1200/JCO.2022.40.16_suppl.e15547 |
[26] |
Zheng Y, Fu Y, Wang PP, et al. Neoantigen: a promising target for the immunotherapy of colorectal cancer[J]. Dis Markers, 2022, 2022: 8270305. DOI: 10.1155/2022/8270305.
doi: 10.1155/2022/8270305 |
[27] |
Jardim DL, Goodman A, de Melo Gagliato D, et al. The challenges of tumor mutational burden as an immunotherapy biomarker[J]. Cancer Cell, 2021, 39(2): 154-173. DOI: 10.1016/j.ccell.2020.10.001.
doi: 10.1016/j.ccell.2020.10.001 pmid: 33125859 |
[28] |
Westcott PMK, Sacks NJ, Schenkel JM, et al. Low neoantigen expression and poor T-cell priming underlie early immune escape in colorectal cancer[J]. Nat Cancer, 2021, 2(10): 1071-1085. DOI: 10.1038/s43018-021-00247-z.
doi: 10.1038/s43018-021-00247-z |
[29] |
Caushi JX, Zhang J, Ji Z, et al. Transcriptional programs of neoantigen-specific TIL in anti-PD-1-treated lung cancers[J]. Nature, 2021, 596(7870): 126-132. DOI: 10.1038/s41586-021-03752-4.
doi: 10.1038/s41586-021-03752-4 |
[30] |
Graham LS, Pritchard CC, Schweizer MT. Hypermutation, mismatch repair deficiency, and defining predictors of response to checkpoint blockade[J]. Clin Cancer Res, 2021, 27(24): 6662-6665. DOI: 10.1158/1078-0432.CCR-21-3031.
doi: 10.1158/1078-0432.CCR-21-3031 pmid: 34580112 |
[31] |
Tondini E, Arakelian T, Oosterhuis K, et al. A poly-neoantigen DNA vaccine synergizes with PD-1 blockade to induce T cell-mediated tumor control[J]. Oncoimmunology, 2019, 8(11): 1652539. DOI: 10.1080/2162402X.2019.1652539.
doi: 10.1080/2162402X.2019.1652539 |
[32] |
Palmer CD, Rappaport AR, Davis MJ, et al. Individualized, heterologous chimpanzee adenovirus and self-amplifying mRNA neoantigen vaccine for advanced metastatic solid tumors: phase 1 trial interim results[J]. Nat Med, 2022, 28(8): 1619-1629. DOI: 10.1038/s41591-022-01937-6.
doi: 10.1038/s41591-022-01937-6 pmid: 35970920 |
[33] |
Suarez-Carmona M, Williams A, Schreiber J, et al. Combined inhibition of CXCL12 and PD-1 in MSS colorectal and pancreatic cancer: modulation of the microenvironment and clinical effects[J]. J Immunother Cancer, 2021, 9(10): e002505. DOI: 10.1136/jitc-2021-002505.
doi: 10.1136/jitc-2021-002505 |
[34] |
Liu N, Shan F, Ma M. Strategic enhancement of immune checkpoint inhibition in refractory colorectal cancer: trends and future prospective[J]. Int Immunopharmacol, 2021, 99: 108017. DOI: 10.1016/j.intimp.2021.108017.
doi: 10.1016/j.intimp.2021.108017 |
[35] |
Fukuoka S, Hara H, Takahashi N, et al. Regorafenib plus nivo-lumab in patients with advanced gastric or colorectal cancer: an open-label, dose-escalation, and dose-expansion phaseⅠb trial (REGONIVO, EPOC1603)[J]. J Clin Oncol, 2020, 38(18): 2053-2061. DOI: 10.1200/JCO.19.03296.
doi: 10.1200/JCO.19.03296 pmid: 32343640 |
[36] |
Wang Y, Wei B, Gao J, et al. Combination of fruquintinib and anti-PD-1 for the treatment of colorectal cancer[J]. J Immunol, 2020, 205(10): 2905-2915. DOI: 10.4049/jimmunol.2000463.
doi: 10.4049/jimmunol.2000463 pmid: 33028620 |
[37] |
Fang X, Zhong C, Zhu N, et al. A phase 2 trial of sintilimab (IBI 308) in combination with CAPEOX and bevacizumab (BBCAPX) as first-line treatment in patients with RAS-mutant, microsatellite stable, unresectable metastatic colorectal cancer[J]. J Clin Oncol, 2022, 40(16_suppl): 3563. DOI: 10.1200/JCO.2022.40.16_suppl.3563.
doi: 10.1200/JCO.2022.40.16_suppl.3563 |
[38] |
Huyghe N, De Cuyper A, Sinapi I, et al. Interim analysis of the phase Ⅱ AVETUXIRI trial: avelumab combined with cetuximab and irinotecan for treatment of refractory microsatellite stable (MSS) metastatic colorectal cancer (mCRC)[J]. J Clin Oncol, 2022, 40(16_suppl): 3595. DOI: 10.1200/JCO.2022.40.16_suppl.3595.
doi: 10.1200/JCO.2022.40.16_suppl.3595 |
[39] |
Bocobo AG, Wang R, Behr S, et al. Phase Ⅱ study of pembrolizumab plus capecitabine and bevacizumab in microsatellite stable (MSS) metastatic colorectal cancer (mCRC)[J]. J Clin Oncol, 2022, 40(16_suppl): 3565. DOI: 10.1200/JCO.2022.40.16_suppl.3565.
doi: 10.1200/JCO.2022.40.16_suppl.3565 |
[40] |
Malogolovkin A, Gasanov N, Egorov A, et al. Combinatorial approaches for cancer treatment using oncolytic viruses: projecting the perspectives through clinical trials outcomes[J]. Viruses, 2021, 13(7): 1271. DOI: 10.3390/v13071271.
doi: 10.3390/v13071271 |
[41] |
Ylösmäki E, Cerullo V. Design and application of oncolytic viruses for cancer immunotherapy[J]. Curr Opin Biotechnol, 2020, 65: 25-36. DOI: 10.1016/j.copbio.2019.11.016.
doi: 10.1016/j.copbio.2019.11.016 |
[42] |
Ma R, Li Z, Chiocca EA, et al. The emerging field of oncolytic virus-based cancer immunotherapy[J]. Trends Cancer, 2023, 9(2): 122-139. DOI: 10.1016/j.trecan.2022.10.003.
doi: 10.1016/j.trecan.2022.10.003 |
[43] |
Carr MJ, Sun J, DePalo D, et al. Talimogene laherparepvec (T-VEC) for the treatment of advanced locoregional melanoma after failure of immunotherapy: an international multi-institutional experience[J]. Ann Surg Oncol, 2022, 29(2): 791-801. DOI: 10.1245/s10434-021-10910-5.
doi: 10.1245/s10434-021-10910-5 |
[44] |
Ahamadi M, Kast J, Chen PW, et al. Oncolytic viral kinetics mechanistic modeling of Talimogene Laherparepvec (T-VEC) a first-in-class oncolytic viral therapy in patients with advanced melanoma[J]. CPT Pharmacometrics Syst Pharmacol, 2023, 12(2): 250-260. DOI: 10.1002/psp4.12898.
doi: 10.1002/psp4.12898 |
[45] |
Kim C, Chon HJ, Lee HJ, et al. Abstract 1914: orally available oncolytic reovirus, RC402, effectively promotes anti-cancer immunity and synergizes with immune checkpoint blockade in colon cancer[J]. Cancer Res, 2021, 81(13_Supplement): 1914. DOI: 10.1158/1538-7445. AM2021-1914.
doi: 10.1158/1538-7445.AM2021-2021 |
[46] |
Zhang B, Huang J, Tang J, et al. Intratumoral OH2, an oncolytic herpes simplex virus 2, in patients with advanced solid tumors: a multicenter, phase Ⅰ/Ⅱ clinical trial[J]. J Immunother Cancer, 2021, 9(4): e002224. DOI: 10.1136/jitc-2020-002224.
doi: 10.1136/jitc-2020-002224 |
[47] |
Morelli MP, Xie C, Brar G, et al. A phase Ⅰ/Ⅱ study of pexa-vec oncolytic virus in combination with immune checkpoint inhibition in refractory colorectal cancer: safety report[J]. J Clin Oncol, 2019, 37(suppl 4): 646. DOI: 10.1200/JCO.2019.37.4_suppl.646.
doi: 10.1200/JCO.2019.37.4_suppl.646 |
[48] |
Coupez D, Hulo P, Touchefeu Y, et al. Pembrolizumab for the treatment of colorectal cancer[J]. Expert Opin Biol Ther, 2020, 20(3): 219-226. DOI: 10.1080/14712598.2020.1718095.
doi: 10.1080/14712598.2020.1718095 pmid: 31952453 |
[49] |
Verschoor YL, van den Berg J, Beets G, et al. Neoadjuvant nivolumab, ipilimumab, and celecoxib in MMR-proficient and MMR-deficient colon cancers: final clinical analysis of the NICHE study[J]. J Clin Oncol, 2022, 40(16_suppl): 3511. DOI: 10.1200/JCO.2022.40.16_suppl.3511.
doi: 10.1200/JCO.2022.40.16_suppl.3511 |
[50] |
Chen EX, Jonker DJ, Loree JM, et al. Effect of combined immune checkpoint inhibition vs best supportive care alone in patients with advanced colorectal cancer: the Canadian Cancer Trials Group CO.26 Study[J]. JAMA Oncol, 2020, 6(6): 831-838. DOI: 10.1001/jamaoncol.2020.0910.
doi: 10.1001/jamaoncol.2020.0910 pmid: 32379280 |
[51] |
Chen Y, Liu C, Zhu S, et al. PD-1/PD-L1 immune checkpoint blockade-based combinational treatment: immunotherapeutic amplification strategies against colorectal cancer[J]. Int Immunopharmacol, 2021, 96: 107607. DOI: 10.1016/j.intimp.2021.107607.
doi: 10.1016/j.intimp.2021.107607 |
[1] | Yang Mi, Bie Jun, Zhang Jiayong, Deng Jiaxiu, Tang Zuge, Lu Jun. Analysis of the efficacy and prognosis of neoadjuvant therapy for locally advanced resectable esophageal cancer [J]. Journal of International Oncology, 2024, 51(6): 332-337. |
[2] | Xu Fenglin, Wu Gang. Research progress of EBV in tumor immune microenvironment and immunotherapy of nasopharyngeal carcinoma [J]. Journal of International Oncology, 2024, 51(6): 359-363. |
[3] | Zhang Rui, Chu Yanliu. Research progress of colorectal cancer risk assessment models based on FIT and gut microbiota [J]. Journal of International Oncology, 2024, 51(6): 370-375. |
[4] | Gao Fan, Wang Ping, Du Chao, Chu Yanliu. Research progress on intestinal flora and non-surgical treatment of the colorectal cancer [J]. Journal of International Oncology, 2024, 51(6): 376-381. |
[5] | Fan Zhipeng, Yu Jing, Hu Jing, Liao Zhengkai, Xu Yu, Ouyang Wen, Xie Conghua. Predictive value of changes in inflammatory markers for prognosis in patients with advanced non-small cell lung cancer treated with the first-line immunotherapy plus chemotherapy [J]. Journal of International Oncology, 2024, 51(5): 257-266. |
[6] | Wang Junyi, Hong Kaibin, Ji Rongjia, Chen Dachao. Effect of cancer nodules on liver metastases after radical resection of colorectal cancer [J]. Journal of International Oncology, 2024, 51(5): 280-285. |
[7] | Fu Yi, Ma Chenying, Zhang Lu, Zhou Juying. Research progress of habitat analysis in radiomics of malignant tumors [J]. Journal of International Oncology, 2024, 51(5): 292-297. |
[8] | Yang Hao, Shi Guidong, Zhang Chengcheng, Zhang Yue, Zhang Liwen, Fu Maoyong. Comparison of efficacy and safety between sintilimab and tislelizumab in neoadjuvant therapy for advanced esophageal squamous cell carcinoma [J]. Journal of International Oncology, 2024, 51(4): 210-216. |
[9] | Sa Qiang, Xu Hangcheng, Wang Jiayu. Advances in immunotherapy for breast cancer [J]. Journal of International Oncology, 2024, 51(4): 227-234. |
[10] | Yang Zhi, Lu Yiqiao, Gu Huayan, Ding Jialing, Guo Guilong. Research progress of tumor microenvironment mediated drug resistance in targeted therapy of breast cancer [J]. Journal of International Oncology, 2024, 51(4): 235-238. |
[11] | Sun Weiwei, Yao Xuemin, Wang Pengjian, Wang Jing, Jia Jinghao. Exploration of prognostic factors and nomogram construction for advanced non-small cell lung cancer treated with immunotherapy based on hematologic indexes [J]. Journal of International Oncology, 2024, 51(3): 143-150. |
[12] | Liu Yulan, Jing Haiyan, Sun Jing, Song Wei, Sha Dan. Advances in predicting efficacy and prognostic markers of immunotherapy for gastric cancer [J]. Journal of International Oncology, 2024, 51(3): 175-180. |
[13] | Sun Guobao, Yang Qian, Zhuang Qingchun, Gao Binbin, Sun Xiaogang, Song Wei, Sha Dan. Research progress on the histopathological growth patterns of colorectal liver metastasis [J]. Journal of International Oncology, 2024, 51(2): 114-118. |
[14] | Liu Xiaodi, Su Jianfei, Zhang Jingxian, Wei Xueqin, Jia Yingjie. Research progress of myeloid-derived suppressor cells in tumor angiogenesis [J]. Journal of International Oncology, 2024, 51(1): 50-54. |
[15] | Gu Huayan, Zhu Teng, Guo Guilong. Breast microbiota and breast cancer: present and future [J]. Journal of International Oncology, 2024, 51(1): 55-58. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||