Journal of International Oncology ›› 2024, Vol. 51 ›› Issue (1): 50-54.doi: 10.3760/cma.j.cn371439-20230227-00006
• Reviews • Previous Articles Next Articles
Liu Xiaodi, Su Jianfei, Zhang Jingxian, Wei Xueqin, Jia Yingjie()
Received:
2023-02-27
Revised:
2023-11-20
Online:
2024-01-08
Published:
2024-01-23
Contact:
Jia Yingjie
E-mail:jiayingjie1616@sina.com
Liu Xiaodi, Su Jianfei, Zhang Jingxian, Wei Xueqin, Jia Yingjie. Research progress of myeloid-derived suppressor cells in tumor angiogenesis[J]. Journal of International Oncology, 2024, 51(1): 50-54.
[1] | Vetsika EK, Koukos A, Kotsakis A. Myeloid-derived suppressor cells: major figures that shape the immunosuppressive and angiogenic network in cancer[J]. Cells, 2019, 8(12): 1647. DOI: 10.3390/cells8121647. |
[2] |
Ouyang L, Dan Y, Shao Z, et al. MMP-sensitive PEG hydrogel modified with RGD promotes bFGF, VEGF and EPC-mediated angiogenesis[J]. Exp Ther Med, 2019, 18(4): 2933-2941. DOI: 10.3892/etm.2019.7885.
pmid: 31572536 |
[3] | Yuan XH, Yang J, Wang XY, et al. Association between EGFR/KRAS mutation and expression of VEGFA, VEGFR and VEGFR2 in lung adenocarcinoma[J]. Oncol Lett, 2018, 16(2): 2105-2112. DOI: 10.3892/ol.2018.8901. |
[4] | Vimalraj S. A concise review of VEGF, PDGF, FGF, Notch, angio-poietin, and HGF signalling in tumor angiogenesis with a focus on alternative approaches and future directions[J]. Int J Biol Macromol, 2022, 221: 1428-1438. DOI: 10.1016/j.ijbiomac.2022.09.129. |
[5] |
Wang D, Xu Y, Feng L, et al. RGS5 decreases the proliferation of human ovarian carcinoma‑derived primary endothelial cells through the MAPK/ERK signaling pathway in hypoxia[J]. Oncol Rep, 2019, 41(1): 165-177. DOI: 10.3892/or.2018.6811.
pmid: 30365142 |
[6] | Garnier L, Pick R, Montorfani J, et al. IFN-γ-dependent tumor-antigen cross-presentation by lymphatic endothelial cells promotes their killing by T cells and inhibits metastasis[J]. Sci Adv, 2022, 8(23): eabl5162. DOI: 10.1126/sciadv.abl5162. |
[7] | Cole K, Pravoverov K, Talmadge JE. Role of myeloid-derived suppressor cells in metastasis[J]. Cancer Metastasis Rev, 2021, 40(2): 391-411. DOI: 10.1007/s10555-020-09947-x. |
[8] |
Nourbakhsh E, Mohammadi A, Salemizadeh Parizi M, et al. Role of myeloid-derived suppressor cell (MDSC) in autoimmunity and its potential as a therapeutic target[J]. Inflammopharmacology, 2021, 29(5): 1307-1315. DOI: 10.1007/s10787-021-00846-3.
pmid: 34283371 |
[9] |
Weber R, Fleming V, Hu X, et al. Myeloid-derived suppressor cells hinder the anti-cancer activity of immune checkpoint inhibitors[J]. Front Immunol, 2018, 9: 1310. DOI: 10.3389/fimmu.2018.01310.
pmid: 29942309 |
[10] | Wu C, Tan X, Hu X, et al. Tumor microenvironment following gemcitabine treatment favors differentiation of immunosuppressive Ly6Chigh myeloid cells[J]. J Immunol, 2020, 204(1): 212-223. DOI: 10.4049/jimmunol.1900930. |
[11] |
Aarts CEM, Hiemstra IH, Furumaya C, et al. Different MDSC activity of G-CSF/dexamethasone mobilized neutrophils: benefits to the patient?[J]. Front Oncol, 2020, 10: 1110. DOI: 10.3389/fonc.2020.01110.
pmid: 32793476 |
[12] |
Alfaro C, Teijeira A, Oñate C, et al. Tumor-produced interleukin-8 attracts human myeloid-derived suppressor cells and elicits extrusion of neutrophil extracellular traps (NETs)[J]. Clin Cancer Res, 2016, 22(15): 3924-3936. DOI: 10.1158/1078-0432.CCR-15-2463.
pmid: 26957562 |
[13] | Gneo L, Rizkalla N, Hejmadi R, et al. TGF-β orchestrates the phenotype and function of monocytic myeloid-derived suppressor cells in colorectal cancer[J]. Cancer Immunol Immunother, 2022, 71(7): 1583-1596. DOI: 10.1007/s00262-021-03081-5. |
[14] | Aggen DH, Ager CR, Obradovic AZ, et al. Blocking IL1 β promotes tumor regression and remodeling of the myeloid compartment in a renal cell carcinoma model: multidimensional analyses[J]. Clin Cancer Res, 2021, 27(2): 608-621. DOI: 10.1158/1078-0432.CCR-20-1610. |
[15] | Lee JY, Sohn HJ, Kim CH, et al. Local and systemic injections of human cord blood myeloid-derived suppressor cells to prevent graft rejection in corneal transplantation[J]. Biomedicines, 2022, 10(12): 3223. DOI: 10.3390/biomedicines10123223. |
[16] |
Guan X, Liu Z, Zhang J, et al. Myeloid-derived suppressor cell accumulation in renal cell carcinoma is correlated with CCL2, IL-17 and IL-18 expression in blood and tumors[J]. Adv Clin Exp Med, 2018, 27(7): 947-953. DOI: 10.17219/acem/70065.
pmid: 29905412 |
[17] | 申加兴, 张珊, 陈祥静, 等. TGF-β诱导肺脏癌相关成纤维细胞高表达IL-17D并促进MDSC募集[J]. 国际肿瘤学杂志, 2021, 48(5): 275-281. DOI: 10.3760/cma.j.cn371439-20210115-00053. |
[18] | Weber R, Groth C, Lasser S, et al. IL-6 as a major regulator of MDSC activity and possible target for cancer immunotherapy[J]. Cell Immunol, 2021, 359: 104254. DOI: 10.1016/j.cellimm.2020.104254. |
[19] | Shi H, Qin Y, Tian Y, et al. Interleukin-1β triggers the expansion of circulating granulocytic myeloid-derived suppressor cell subset dependent on Erk1/2 activation[J]. Immunobiology, 2022, 227(1): 152165. DOI: 10.1016/j.imbio.2021.152165. |
[20] | Chouaib S, Umansky V, Kieda C. The role of hypoxia in shaping the recruitment of proangiogenic and immunosuppressive cells in the tumor microenvironment[J]. Contemp Oncol (Pozn), 2018, 22(1A): 7-13. DOI: 10.5114/wo.2018.73874. |
[21] |
Guo X, Qiu W, Wang J, et al. Glioma exosomes mediate the expansion and function of myeloid-derived suppressor cells through microRNA-29a/Hbp1 and microRNA-92a/Prkar1a pathways[J]. Int J Cancer, 2019, 144(12): 3111-3126. DOI: 10.1002/ijc.32052.
pmid: 30536597 |
[22] | 崔维刚, 时会芳, 张敏, 等. 髓源性抑制细胞在肿瘤微环境中作用的研究进展[J]. 中国医药, 2022, 17(10): 1592-1596. DOI: 10.3760/j.issn.1673-4777.2022.10.035. |
[23] |
Yang J, Yan J, Liu B. Targeting VEGF/VEGFR to modulate antitumor immunity[J]. Front Immunol, 2018, 9: 978. DOI: 10.3389/fimmu.2018.00978.
pmid: 29774034 |
[24] |
Horikawa N, Abiko K, Matsumura N, et al. Expression of vascular endothelial growth factor in ovarian cancer inhibits tumor immunity through the accumulation of myeloid-derived suppressor cells[J]. Clin Cancer Res, 2017, 23(2): 587-599. DOI: 10.1158/1078-0432.CCR-16-0387.
pmid: 27401249 |
[25] | Bauer R, Udonta F, Wroblewski M, et al. Blockade of myeloid-derived suppressor cell expansion with all-trans retinoic acid increases the efficacy of antiangiogenic therapy[J]. Cancer Res, 2018, 78(12): 3220-3232. DOI: 10.1158/0008-5472.CAN-17-3415. |
[26] |
Bruno A, Mortara L, Baci D, et al. Myeloid derived suppressor cells interactions with natural killer cells and pro-angiogenic activities: roles in tumor progression[J]. Front Immunol, 2019, 10: 771. DOI: 10.3389/fimmu.2019.00771.
pmid: 31057536 |
[27] | Su YL, Banerjee S, White SV, et al. STAT3 in tumor-associated myeloid cells: multitasking to disrupt immunity[J]. Int J Mol Sci, 2018, 19(6): 1803. DOI: 10.3390/ijms19061803. |
[28] | Itatani Y, Kawada K, Yamamoto T, et al. Resistance to anti-angiogenic therapy in cancer-alterations to anti-VEGF pathway[J]. Int J Mol Sci, 2018, 19(4): 1232. DOI: 10.3390/ijms19041232. |
[29] |
Veglia F, Sanseviero E, Gabrilovich DI. Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity[J]. Nat Rev Immunol, 2021, 21(8): 485-498. DOI: 10.1038/s41577-020-00490-y.
pmid: 33526920 |
[30] |
Fahey E, Doyle SL. IL-1 family cytokine regulation of vascular permeability and angiogenesis[J]. Front Immunol, 2019, 10: 1426. DOI: 10.3389/fimmu.2019.01426.
pmid: 31293586 |
[31] | Hsu YL, Yen MC, Chang WA, et al. CXCL17-derived CD11b+Gr-1+ myeloid-derived suppressor cells contribute to lung metastasis of breast cancer through platelet-derived growth factor-BB[J]. Breast Cancer Res, 2019, 21(1): 23. DOI: 10.1186/s13058-019-1114-3. |
[32] |
Duhan V, Smyth MJ. Innate myeloid cells in the tumor microenvironment[J]. Curr Opin Immunol, 2021, 69: 18-28. DOI: 10.1016/j.coi.2021.01.001.
pmid: 33588308 |
[33] | Fu LQ, Du WL, Cai MH, et al. The roles of tumor-associated macrophages in tumor angiogenesis and metastasis[J]. Cell Immunol, 2020, 353: 104119. DOI: 10.1016/j.cellimm.2020.104119. |
[34] | Zhang N, Gao X, Zhang W, et al. JEV infection induces M-MDSC differentiation into CD3+ macrophages in the brain[J]. Front Immunol, 2022, 13: 838990. DOI: 10.3389/fimmu.2022.838990. |
[35] |
Hossain F, Majumder S, Ucar DA, et al. Notch signaling in myeloid cells as a regulator of tumor immune responses[J]. Front Immunol, 2018, 9: 1288. DOI: 10.3389/fimmu.2018.01288.
pmid: 29915603 |
[36] | Mortezaee K. Myeloid-derived suppressor cells in cancer immuno-therapy-clinical perspectives[J]. Life Sci, 2021, 277: 119627. DOI: 10.1016/j.lfs.2021.119627. |
[37] | Astarita JL, Dominguez CX, Tan C, et al. Treg specialization and functions beyond immune suppression[J]. Clin Exp Immunol, 2023, 211(2): 176-183. DOI: 10.1093/cei/uxac123. |
[38] | Sammarco G, Varricchi G, Ferraro V, et al. Mast cells, angio-genesis and lymphangiogenesis in human gastric cancer[J]. Int J Mol Sci, 2019, 20(9): 2106. DOI: 10.3390/ijms20092106. |
[39] |
Geis-Asteggiante L, Belew AT, Clements VK, et al. Differential content of proteins, mRNAs, and miRNAs suggests that MDSC and their exosomes may mediate distinct immune suppressive functions[J]. J Proteome Res, 2018, 17(1): 486-498. DOI: 10.1021/acs.jproteome.7b00646.
pmid: 29139296 |
[40] |
Zöller M. Janus-faced myeloid-derived suppressor cell exosomes for the good and the bad in cancer and autoimmune disease[J]. Front Immunol, 2018, 9: 137. DOI: 10.3389/fimmu.2018.00137.
pmid: 29456536 |
[41] | Wang Y, Yin K, Tian J, et al. Granulocytic myeloid-derived suppressor cells promote the stemness of colorectal cancer cells through exosomal S100A9[J]. Adv Sci (Weinh), 2019, 6(18): 1901278. |
[42] |
Zhong X, Xie F, Chen L, et al. S100A8 and S100A9 promote endothelial cell activation through the RAGE‑mediated mammalian target of rapamycin complex 2 pathway[J]. Mol Med Rep, 2020, 22(6): 5293-5303. DOI: 10.3892/mmr.2020.11595.
pmid: 33174028 |
[43] | Liu Q, Peng F, Chen J. The role of exosomal microRNAs in the tumor microenvironment of breast cancer[J]. Int J Mol Sci, 2019, 20(16): 3884. DOI: 10.3390/ijms20163884. |
[1] | Fu Yi, Ma Chenying, Zhang Lu, Zhou Juying. Research progress of habitat analysis in radiomics of malignant tumors [J]. Journal of International Oncology, 2024, 51(5): 292-297. |
[2] | Yang Zhi, Lu Yiqiao, Gu Huayan, Ding Jialing, Guo Guilong. Research progress of tumor microenvironment mediated drug resistance in targeted therapy of breast cancer [J]. Journal of International Oncology, 2024, 51(4): 235-238. |
[3] | Gu Huayan, Zhu Teng, Guo Guilong. Breast microbiota and breast cancer: present and future [J]. Journal of International Oncology, 2024, 51(1): 55-58. |
[4] | Pan Shulan, Liu Chang, He Ping. Effect of fritinib on angiogenesis, tumor growth and IRE1-ASK1-JNK pathway in triple negative breast cancer [J]. Journal of International Oncology, 2023, 50(8): 457-462. |
[5] | Zhang Yuan, Bai Zhiyu, Li Qi, Feng Qinmei. Current status of research on exosomes in malignancies [J]. Journal of International Oncology, 2023, 50(8): 484-488. |
[6] | Xu Meng, Jiang Wei, Zhu Haitao, Cao Xiongfeng. Research progress of cancer-associated fibroblasts in tumor radiotherapy resistance [J]. Journal of International Oncology, 2023, 50(4): 227-230. |
[7] | Ding Hao, Ying Jintao, Fu Maoyong. Research progress of CAR-T in the treatment of esophageal squamous cell carcinoma [J]. Journal of International Oncology, 2023, 50(4): 231-235. |
[8] | Cao Mengqing, Xu Zhiyong, Shi Yuting, Wang Kai. Role of tertiary lymphoid structures in tumor immune microenvironment regulation and anti-tumor therapy [J]. Journal of International Oncology, 2023, 50(3): 169-173. |
[9] | Xu Liangfu, Li Yuanfei. Research progress on tumor microenvironment and immune combination therapy of MSS colorectal cancer [J]. Journal of International Oncology, 2023, 50(3): 186-190. |
[10] | Zhu Yi, Chen Jian. Mechanism of hydrogen sulfide in tumorigenesis and development and its donor-mediated anti-tumor effects [J]. Journal of International Oncology, 2023, 50(12): 729-733. |
[11] | Xie Lulu, Ding Jianghua. Progress of immunotherapy-based strategy in triple-negative breast cancer [J]. Journal of International Oncology, 2023, 50(11): 672-676. |
[12] | Tao Hong, Yin Hong, Luo Hong, Tao Jiayu. Potential strategies for targeting tumor-associated macrophages to enhance the efficacy of immune checkpoint inhibitors for colorectal cancer [J]. Journal of International Oncology, 2023, 50(11): 683-687. |
[13] | Ma Xueyan, Lu Lili, Sun Pengfei. Advances in the immune microenvironment in cervical cancer [J]. Journal of International Oncology, 2023, 50(1): 47-50. |
[14] | Wu Jiayu, Liu Jiacheng. Research progress of radiomics toward lung adenocarcinoma manifesting as solitary ground glass nodule [J]. Journal of International Oncology, 2022, 49(8): 449-452. |
[15] | Zhang Zishu, Wu Xinlin. Mechanism of action of lactic acid in tumor microenvironment and related treatment [J]. Journal of International Oncology, 2022, 49(6): 349-352. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||