Journal of International Oncology ›› 2022, Vol. 49 ›› Issue (6): 349-352.doi: 10.3760/cma.j.cn371439-20220330-00066
• Reviews • Previous Articles Next Articles
Received:
2022-03-30
Revised:
2022-04-25
Online:
2022-06-08
Published:
2022-06-30
Contact:
Wu Xinlin
E-mail:wuxinlin@126.
Supported by:
Zhang Zishu, Wu Xinlin. Mechanism of action of lactic acid in tumor microenvironment and related treatment[J]. Journal of International Oncology, 2022, 49(6): 349-352.
[1] |
Martínez-Reyes I, Chandel NS. Cancer metabolism: looking forward[J]. Nat Rev Cancer, 2021, 21(10): 669-680. DOI: 10.1038/s41568-021-00378-6.
doi: 10.1038/s41568-021-00378-6 pmid: 34272515 |
[2] |
Vaupel P, Multhoff G. Revisiting the warburg effect: historical dogma versus current understanding[J]. J Physiol, 2021, 599(6): 1745-1757. DOI: 10.1113/JP278810.
doi: 10.1113/JP278810 |
[3] |
Martinez-Outschoorn UE, Peiris-Pagés M, Pestell RG, et al. Cancer metabolism: a therapeutic perspective[J]. Nat Rev Clin Oncol, 2017, 14(1): 11-31. DOI: 10.1038/nrclinonc.2016.60.
doi: 10.1038/nrclinonc.2016.60 pmid: 27141887 |
[4] |
Pérez-Escuredo J, Van Hée VF, Sboarina M, et al. Monocarboxy-late transporters in the brain and in cancer[J]. Biochim Biophys Acta, 2016, 1863(10): 2481-2497. DOI: 10.1016/j.bbamcr.2016.03.013.
doi: 10.1016/j.bbamcr.2016.03.013 pmid: 26993058 |
[5] |
Payen VL, Mina E, Van Hée VF, et al. Monocarboxylate transpor-ters in cancer[J]. Mol Metab, 2020, 33: 48-66. DOI: 10.1016/j.molmet.2019.07.006.
doi: 10.1016/j.molmet.2019.07.006 |
[6] |
Wang N, Jiang X, Zhang S, et al. Structural basis of human monocarboxylate transporter 1 inhibition by anti-cancer drug candidates[J]. Cell, 2021, 184(2): 370-383. e13. DOI: 10.1016/j.cell.2020.11.043.
doi: 10.1016/j.cell.2020.11.043 pmid: 33333023 |
[7] |
Faubert B, Li KY, Cai L, et al. Lactate metabolism in human lung tumors[J]. Cell, 2017, 171(2): 358-371. e9. DOI: 10.1016/j.cell.2017.09.019.
doi: 10.1016/j.cell.2017.09.019 |
[8] |
Mantovani A, Marchesi F, Malesci A, et al. Tumour-associated macrophages as treatment targets in oncology[J]. Nat Rev Clin Oncol, 2017, 14(7): 399-416. DOI: 10.1038/nrclinonc.2016.217.
doi: 10.1038/nrclinonc.2016.217 pmid: 28117416 |
[9] |
Colegio OR, Chu NQ, Szabo AL, et al. Functional polarization of tumour-associated macrophages by tumour-derived lactic acid[J]. Nature, 2014, 513(7519): 559-563. DOI: 10.1038/nature13490.
doi: 10.1038/nature13490 |
[10] |
Chen P, Zuo H, Xiong H, et al. Gpr132 sensing of lactate medi-ates tumor-macrophage interplay to promote breast cancer meta-stasis[J]. Proc Natl Acad Sci U S A, 2017, 114(3): 580-585. DOI: 10.1073/pnas.1614035114.
doi: 10.1073/pnas.1614035114 |
[11] |
Wei C, Yang C, Wang S, et al. Crosstalk between cancer cells and tumor associated macrophages is required for mesenchymal circulating tumor cell-mediated colorectal cancer metastasis[J]. Mol Cancer, 2019, 18(1): 64. DOI: 10.1186/s12943-019-0976-4.
doi: 10.1186/s12943-019-0976-4 |
[12] |
Kalluri R. The biology and function of fibroblasts in cancer[J]. Nat Rev Cancer, 2016, 16(9): 582-598. DOI: 10.1038/nrc.2016.73.
doi: 10.1038/nrc.2016.73 pmid: 27550820 |
[13] |
Kogure A, Naito Y, Yamamoto Y, et al. Cancer cells with high-metastatic potential promote a glycolytic shift in activated fibroblasts[J]. PLoS One, 2020, 15(6): e0234613. DOI: 10.1371/journal.pone.0234613.
doi: 10.1371/journal.pone.0234613 |
[14] |
Fitzgerald G, Soro-Arnaiz I, De Bock K. The warburg effect in endothelial cells and its potential as an anti-angiogenic target in cancer[J]. Front Cell Dev Biol, 2018, 6: 100. DOI: 10.3389/fcell.2018.00100.
doi: 10.3389/fcell.2018.00100 pmid: 30255018 |
[15] |
Sun S, Li H, Chen J, et al. Lactic acid: no longer an inert and end-product of glycolysis[J]. Physiology (Bethesda), 2017, 32(6): 453-463. DOI: 10.1152/physiol.00016.2017.
doi: 10.1152/physiol.00016.2017 |
[16] |
Brown TP, Ganapathy V. Lactate/GPR81 signaling and proton motive force in cancer: role in angiogenesis, immune escape, nutrition, and Warburg phenomenon[J]. Pharmacol Ther, 2020, 206: 107451. DOI: 10.1016/j.pharmthera.2019.107451.
doi: 10.1016/j.pharmthera.2019.107451 |
[17] |
Deng F, Zhou R, Lin C, et al. Tumor-secreted dickkopf2 accele-rates aerobic glycolysis and promotes angiogenesis in colorectal cancer[J]. Theranostics, 2019, 9(4): 1001-1014. DOI: 10.7150/thno.30056.
doi: 10.7150/thno.30056 |
[18] |
Yang J, Jiang Y, He R, et al. DKK2 impairs tumor immunity infiltration and correlates with poor prognosis in pancreatic ductal adenocarcinoma[J]. J Immunol Res, 2019, 2019: 8656282. DOI: 10.1155/2019/8656282.
doi: 10.1155/2019/8656282 |
[19] |
Hu J, Wang Z, Chen Z, et al. DKK2 blockage-mediated immunotherapy enhances anti-angiogenic therapy of Kras mutated colorectal cancer[J]. Biomed Pharmacother, 2020, 127: 110229. DOI: 10.1016/j.biopha.2020.110229.
doi: 10.1016/j.biopha.2020.110229 |
[20] |
Hayes C, Donohoe CL, Davern M, et al. The oncogenic and clinical implications of lactate induced immunosuppression in the tumour microenvironment[J]. Cancer Lett, 2021, 500: 75-86. DOI: 10.1016/j.canlet.2020.12.021.
doi: 10.1016/j.canlet.2020.12.021 |
[21] |
Brand A, Singer K, Koehl GE, et al. LDHA-associated lactic acid production blunts tumor immunosurveillance by T and NK cells[J]. Cell Metab, 2016, 24(5): 657-671. DOI: 10.1016/j.cmet.2016.08.011.
doi: 10.1016/j.cmet.2016.08.011 |
[22] |
Bae EA, Seo H, Kim IK, et al. Roles of NKT cells in cancer immunotherapy[J]. Arch Pharm Res, 2019, 42(7): 543-548. DOI: 10.1007/s12272-019-01139-8.
doi: 10.1007/s12272-019-01139-8 |
[23] |
de la Cruz-López KG, Castro-Muñoz LJ, Reyes-Hernández DO, et al. Lactate in the regulation of tumor microenvironment and therapeutic approaches[J]. Front Oncol, 2019, 9: 1143. DOI: 10.3389/fonc.2019.01143.
doi: 10.3389/fonc.2019.01143 pmid: 31737570 |
[24] |
Raychaudhuri D, Bhattacharya R, Sinha BP, et al. Lactate indu-ces pro-tumor reprogramming in intratumoral plasmacytoid dendritic cells[J]. Front Immunol, 2019, 10: 1878. DOI: 10.3389/fimmu.2019.01878.
doi: 10.3389/fimmu.2019.01878 pmid: 31440253 |
[25] |
Shaul ME, Fridlender ZG. Tumour-associated neutrophils in patients with cancer[J]. Nat Rev Clin Oncol, 2019, 16(10): 601-620. DOI: 10.1038/s41571-019-0222-4.
doi: 10.1038/s41571-019-0222-4 |
[26] |
Wang JX, Choi SYC, Niu X, et al. Lactic acid and an acidic tumor microenvironment suppress anticancer immunity[J]. Int J Mol Sci, 2020, 21(21): 8363. DOI: 10.3390/ijms21218363.
doi: 10.3390/ijms21218363 |
[27] |
Abdel-Wahab AF, Mahmoud W, Al-Harizy RM. Targeting glucose metabolism to suppress cancer progression: prospective of anti-glycolytic cancer therapy[J]. Pharmacol Res, 2019, 150: 104511. DOI: 10.1016/j.phrs.2019.104511.
doi: 10.1016/j.phrs.2019.104511 |
[28] |
Chen X, Hao B, Li D, et al. Melatonin inhibits lung cancer development by reversing the Warburg effect via stimulating the SIRT3/PDH axis[J]. J Pineal Res, 2021, 71(2): e12755. DOI: 10.1111/jpi.12755.
doi: 10.1111/jpi.12755 |
[29] |
Shen S, Yao T, Xu Y, et al. CircECE1 activates energy meta-bolism in osteosarcoma by stabilizing c-Myc[J]. Mol Cancer, 2020, 19(1): 151. DOI: 10.1186/s12943-020-01269-4.
doi: 10.1186/s12943-020-01269-4 |
[30] |
Ippolito L, Morandi A, Giannoni E, et al. Lactate: a metabolic driver in the tumour landscape[J]. Trends Biochem Sci, 2019, 44(2): 153-166. DOI: 10.1016/j.tibs.2018.10.011.
doi: S0968-0004(18)30227-5 pmid: 30473428 |
[1] | Fu Yi, Ma Chenying, Zhang Lu, Zhou Juying. Research progress of habitat analysis in radiomics of malignant tumors [J]. Journal of International Oncology, 2024, 51(5): 292-297. |
[2] | Yang Zhi, Lu Yiqiao, Gu Huayan, Ding Jialing, Guo Guilong. Research progress of tumor microenvironment mediated drug resistance in targeted therapy of breast cancer [J]. Journal of International Oncology, 2024, 51(4): 235-238. |
[3] | Liu Xiaodi, Su Jianfei, Zhang Jingxian, Wei Xueqin, Jia Yingjie. Research progress of myeloid-derived suppressor cells in tumor angiogenesis [J]. Journal of International Oncology, 2024, 51(1): 50-54. |
[4] | Gu Huayan, Zhu Teng, Guo Guilong. Breast microbiota and breast cancer: present and future [J]. Journal of International Oncology, 2024, 51(1): 55-58. |
[5] | Li Jun, Xue Sheng, Wang Weijie, Tao Run, Zhang Jiajun. Expression of TPX2 in kidney renal clear cell carcinoma and its clinical significance [J]. Journal of International Oncology, 2023, 50(4): 214-219. |
[6] | Xu Meng, Jiang Wei, Zhu Haitao, Cao Xiongfeng. Research progress of cancer-associated fibroblasts in tumor radiotherapy resistance [J]. Journal of International Oncology, 2023, 50(4): 227-230. |
[7] | Ding Hao, Ying Jintao, Fu Maoyong. Research progress of CAR-T in the treatment of esophageal squamous cell carcinoma [J]. Journal of International Oncology, 2023, 50(4): 231-235. |
[8] | Cao Mengqing, Xu Zhiyong, Shi Yuting, Wang Kai. Role of tertiary lymphoid structures in tumor immune microenvironment regulation and anti-tumor therapy [J]. Journal of International Oncology, 2023, 50(3): 169-173. |
[9] | Xu Liangfu, Li Yuanfei. Research progress on tumor microenvironment and immune combination therapy of MSS colorectal cancer [J]. Journal of International Oncology, 2023, 50(3): 186-190. |
[10] | Zhu Yi, Chen Jian. Mechanism of hydrogen sulfide in tumorigenesis and development and its donor-mediated anti-tumor effects [J]. Journal of International Oncology, 2023, 50(12): 729-733. |
[11] | Xie Lulu, Ding Jianghua. Progress of immunotherapy-based strategy in triple-negative breast cancer [J]. Journal of International Oncology, 2023, 50(11): 672-676. |
[12] | Tao Hong, Yin Hong, Luo Hong, Tao Jiayu. Potential strategies for targeting tumor-associated macrophages to enhance the efficacy of immune checkpoint inhibitors for colorectal cancer [J]. Journal of International Oncology, 2023, 50(11): 683-687. |
[13] | Ma Xueyan, Lu Lili, Sun Pengfei. Advances in the immune microenvironment in cervical cancer [J]. Journal of International Oncology, 2023, 50(1): 47-50. |
[14] | Wu Jiayu, Liu Jiacheng. Research progress of radiomics toward lung adenocarcinoma manifesting as solitary ground glass nodule [J]. Journal of International Oncology, 2022, 49(8): 449-452. |
[15] | Wu Jiayi, Chen Keyu, Shao Xiying, Wang Xiaojia. Research progress on the mechanism of CDK4/6 inhibitors promoting antitumor immunity by regulating the immune microenvironment of triple negative breast cancer [J]. Journal of International Oncology, 2022, 49(6): 362-365. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||