
Journal of International Oncology ›› 2022, Vol. 49 ›› Issue (6): 349-352.doi: 10.3760/cma.j.cn371439-20220330-00066
• Reviews • Previous Articles Next Articles
Received:2022-03-30
															
							
																	Revised:2022-04-25
															
							
															
							
																	Online:2022-06-08
															
							
																	Published:2022-06-30
															
						Contact:
								Wu Xinlin   
																	E-mail:wuxinlin@126.
																					Supported by:Zhang Zishu, Wu Xinlin. Mechanism of action of lactic acid in tumor microenvironment and related treatment[J]. Journal of International Oncology, 2022, 49(6): 349-352.
| [1] |  
											 Martínez-Reyes I, Chandel NS. Cancer metabolism: looking forward[J]. Nat Rev Cancer, 2021, 21(10): 669-680. DOI: 10.1038/s41568-021-00378-6. 
																							 doi: 10.1038/s41568-021-00378-6 pmid: 34272515  | 
										
| [2] |  
											 Vaupel P, Multhoff G. Revisiting the warburg effect: historical dogma versus current understanding[J]. J Physiol, 2021, 599(6): 1745-1757. DOI: 10.1113/JP278810. 
																							 doi: 10.1113/JP278810  | 
										
| [3] |  
											 Martinez-Outschoorn UE, Peiris-Pagés M, Pestell RG, et al.  Cancer metabolism: a therapeutic perspective[J]. Nat Rev Clin Oncol, 2017, 14(1): 11-31. DOI: 10.1038/nrclinonc.2016.60. 
																							 doi: 10.1038/nrclinonc.2016.60 pmid: 27141887  | 
										
| [4] |  
											 Pérez-Escuredo J, Van Hée VF, Sboarina M, et al.  Monocarboxy-late transporters in the brain and in cancer[J]. Biochim Biophys Acta, 2016, 1863(10): 2481-2497. DOI: 10.1016/j.bbamcr.2016.03.013. 
																							 doi: 10.1016/j.bbamcr.2016.03.013 pmid: 26993058  | 
										
| [5] |  
											 Payen VL, Mina E, Van Hée VF, et al.  Monocarboxylate transpor-ters in cancer[J]. Mol Metab, 2020, 33: 48-66. DOI: 10.1016/j.molmet.2019.07.006. 
																							 doi: 10.1016/j.molmet.2019.07.006  | 
										
| [6] |  
											 Wang N, Jiang X, Zhang S, et al.  Structural basis of human monocarboxylate transporter 1 inhibition by anti-cancer drug candidates[J]. Cell, 2021, 184(2): 370-383. e13. DOI: 10.1016/j.cell.2020.11.043. 
																							 doi: 10.1016/j.cell.2020.11.043 pmid: 33333023  | 
										
| [7] |  
											 Faubert B, Li KY, Cai L, et al.  Lactate metabolism in human lung tumors[J]. Cell, 2017, 171(2): 358-371. e9. DOI: 10.1016/j.cell.2017.09.019. 
																							 doi: 10.1016/j.cell.2017.09.019  | 
										
| [8] |  
											 Mantovani A, Marchesi F, Malesci A, et al.  Tumour-associated macrophages as treatment targets in oncology[J]. Nat Rev Clin Oncol, 2017, 14(7): 399-416. DOI: 10.1038/nrclinonc.2016.217. 
																							 doi: 10.1038/nrclinonc.2016.217 pmid: 28117416  | 
										
| [9] |  
											 Colegio OR, Chu NQ, Szabo AL, et al.  Functional polarization of tumour-associated macrophages by tumour-derived lactic acid[J]. Nature, 2014, 513(7519): 559-563. DOI: 10.1038/nature13490. 
																							 doi: 10.1038/nature13490  | 
										
| [10] |  
											 Chen P, Zuo H, Xiong H, et al.  Gpr132 sensing of lactate medi-ates tumor-macrophage interplay to promote breast cancer meta-stasis[J]. Proc Natl Acad Sci U S A, 2017, 114(3): 580-585. DOI: 10.1073/pnas.1614035114. 
																							 doi: 10.1073/pnas.1614035114  | 
										
| [11] |  
											 Wei C, Yang C, Wang S, et al.  Crosstalk between cancer cells and tumor associated macrophages is required for mesenchymal circulating tumor cell-mediated colorectal cancer metastasis[J]. Mol Cancer, 2019, 18(1): 64. DOI: 10.1186/s12943-019-0976-4. 
																							 doi: 10.1186/s12943-019-0976-4  | 
										
| [12] |  
											 Kalluri R. The biology and function of fibroblasts in cancer[J]. Nat Rev Cancer, 2016, 16(9): 582-598. DOI: 10.1038/nrc.2016.73. 
																							 doi: 10.1038/nrc.2016.73 pmid: 27550820  | 
										
| [13] |  
											 Kogure A, Naito Y, Yamamoto Y, et al.  Cancer cells with high-metastatic potential promote a glycolytic shift in activated fibroblasts[J]. PLoS One, 2020, 15(6): e0234613. DOI: 10.1371/journal.pone.0234613. 
																							 doi: 10.1371/journal.pone.0234613  | 
										
| [14] |  
											 Fitzgerald G, Soro-Arnaiz I, De Bock K. The warburg effect in endothelial cells and its potential as an anti-angiogenic target in cancer[J]. Front Cell Dev Biol, 2018, 6: 100. DOI: 10.3389/fcell.2018.00100. 
																							 doi: 10.3389/fcell.2018.00100 pmid: 30255018  | 
										
| [15] |  
											 Sun S, Li H, Chen J, et al.  Lactic acid: no longer an inert and end-product of glycolysis[J]. Physiology (Bethesda), 2017, 32(6): 453-463. DOI: 10.1152/physiol.00016.2017. 
																							 doi: 10.1152/physiol.00016.2017  | 
										
| [16] |  
											 Brown TP, Ganapathy V. Lactate/GPR81 signaling and proton motive force in cancer: role in angiogenesis, immune escape, nutrition, and Warburg phenomenon[J]. Pharmacol Ther, 2020, 206: 107451. DOI: 10.1016/j.pharmthera.2019.107451. 
																							 doi: 10.1016/j.pharmthera.2019.107451  | 
										
| [17] |  
											 Deng F, Zhou R, Lin C, et al. Tumor-secreted dickkopf2 accele-rates aerobic glycolysis and promotes angiogenesis in colorectal cancer[J]. Theranostics, 2019, 9(4): 1001-1014. DOI: 10.7150/thno.30056. 
																							 doi: 10.7150/thno.30056  | 
										
| [18] |  
											 Yang J, Jiang Y, He R, et al.  DKK2 impairs tumor immunity infiltration and correlates with poor prognosis in pancreatic ductal adenocarcinoma[J]. J Immunol Res, 2019, 2019: 8656282. DOI: 10.1155/2019/8656282. 
																							 doi: 10.1155/2019/8656282  | 
										
| [19] |  
											 Hu J, Wang Z, Chen Z, et al.  DKK2 blockage-mediated immunotherapy enhances anti-angiogenic therapy of Kras mutated colorectal cancer[J]. Biomed Pharmacother, 2020, 127: 110229. DOI: 10.1016/j.biopha.2020.110229. 
																							 doi: 10.1016/j.biopha.2020.110229  | 
										
| [20] |  
											 Hayes C, Donohoe CL, Davern M, et al.  The oncogenic and clinical implications of lactate induced immunosuppression in the tumour microenvironment[J]. Cancer Lett, 2021, 500: 75-86. DOI: 10.1016/j.canlet.2020.12.021. 
																							 doi: 10.1016/j.canlet.2020.12.021  | 
										
| [21] |  
											 Brand A, Singer K, Koehl GE, et al.  LDHA-associated lactic acid production blunts tumor immunosurveillance by T and NK cells[J]. Cell Metab, 2016, 24(5): 657-671. DOI: 10.1016/j.cmet.2016.08.011. 
																							 doi: 10.1016/j.cmet.2016.08.011  | 
										
| [22] |  
											 Bae EA, Seo H, Kim IK, et al.  Roles of NKT cells in cancer immunotherapy[J]. Arch Pharm Res, 2019, 42(7): 543-548. DOI: 10.1007/s12272-019-01139-8. 
																							 doi: 10.1007/s12272-019-01139-8  | 
										
| [23] |  
											 de la Cruz-López KG, Castro-Muñoz LJ, Reyes-Hernández DO, et al.  Lactate in the regulation of tumor microenvironment and therapeutic approaches[J]. Front Oncol, 2019, 9: 1143. DOI: 10.3389/fonc.2019.01143. 
																							 doi: 10.3389/fonc.2019.01143 pmid: 31737570  | 
										
| [24] |  
											 Raychaudhuri D, Bhattacharya R, Sinha BP, et al.  Lactate indu-ces pro-tumor reprogramming in intratumoral plasmacytoid dendritic cells[J]. Front Immunol, 2019, 10: 1878. DOI: 10.3389/fimmu.2019.01878. 
																							 doi: 10.3389/fimmu.2019.01878 pmid: 31440253  | 
										
| [25] |  
											 Shaul ME, Fridlender ZG. Tumour-associated neutrophils in patients with cancer[J]. Nat Rev Clin Oncol, 2019, 16(10): 601-620. DOI: 10.1038/s41571-019-0222-4. 
																							 doi: 10.1038/s41571-019-0222-4  | 
										
| [26] |  
											 Wang JX, Choi SYC, Niu X, et al.  Lactic acid and an acidic tumor microenvironment suppress anticancer immunity[J]. Int J Mol Sci, 2020, 21(21): 8363. DOI: 10.3390/ijms21218363. 
																							 doi: 10.3390/ijms21218363  | 
										
| [27] |  
											 Abdel-Wahab AF, Mahmoud W, Al-Harizy RM. Targeting glucose metabolism to suppress cancer progression: prospective of anti-glycolytic cancer therapy[J]. Pharmacol Res, 2019, 150: 104511. DOI: 10.1016/j.phrs.2019.104511. 
																							 doi: 10.1016/j.phrs.2019.104511  | 
										
| [28] |  
											 Chen X, Hao B, Li D, et al.  Melatonin inhibits lung cancer development by reversing the Warburg effect via stimulating the SIRT3/PDH axis[J]. J Pineal Res, 2021, 71(2): e12755. DOI: 10.1111/jpi.12755. 
																							 doi: 10.1111/jpi.12755  | 
										
| [29] |  
											 Shen S, Yao T, Xu Y, et al.  CircECE1 activates energy meta-bolism in osteosarcoma by stabilizing c-Myc[J]. Mol Cancer, 2020, 19(1): 151. DOI: 10.1186/s12943-020-01269-4. 
																							 doi: 10.1186/s12943-020-01269-4  | 
										
| [30] |  
											 Ippolito L, Morandi A, Giannoni E, et al.  Lactate: a metabolic driver in the tumour landscape[J]. Trends Biochem Sci, 2019, 44(2): 153-166. DOI: 10.1016/j.tibs.2018.10.011. 
																							 doi: S0968-0004(18)30227-5 pmid: 30473428  | 
										
| [1] | Fu Yi, Ma Chenying, Zhang Lu, Zhou Juying. Research progress of habitat analysis in radiomics of malignant tumors [J]. Journal of International Oncology, 2024, 51(5): 292-297. | 
| [2] | Yang Zhi, Lu Yiqiao, Gu Huayan, Ding Jialing, Guo Guilong. Research progress of tumor microenvironment mediated drug resistance in targeted therapy of breast cancer [J]. Journal of International Oncology, 2024, 51(4): 235-238. | 
| [3] | Liu Xiaodi, Su Jianfei, Zhang Jingxian, Wei Xueqin, Jia Yingjie. Research progress of myeloid-derived suppressor cells in tumor angiogenesis [J]. Journal of International Oncology, 2024, 51(1): 50-54. | 
| [4] | Gu Huayan, Zhu Teng, Guo Guilong. Breast microbiota and breast cancer: present and future [J]. Journal of International Oncology, 2024, 51(1): 55-58. | 
| [5] | Li Jun, Xue Sheng, Wang Weijie, Tao Run, Zhang Jiajun. Expression of TPX2 in kidney renal clear cell carcinoma and its clinical significance [J]. Journal of International Oncology, 2023, 50(4): 214-219. | 
| [6] | Xu Meng, Jiang Wei, Zhu Haitao, Cao Xiongfeng. Research progress of cancer-associated fibroblasts in tumor radiotherapy resistance [J]. Journal of International Oncology, 2023, 50(4): 227-230. | 
| [7] | Ding Hao, Ying Jintao, Fu Maoyong. Research progress of CAR-T in the treatment of esophageal squamous cell carcinoma [J]. Journal of International Oncology, 2023, 50(4): 231-235. | 
| [8] | Cao Mengqing, Xu Zhiyong, Shi Yuting, Wang Kai. Role of tertiary lymphoid structures in tumor immune microenvironment regulation and anti-tumor therapy [J]. Journal of International Oncology, 2023, 50(3): 169-173. | 
| [9] | Xu Liangfu, Li Yuanfei. Research progress on tumor microenvironment and immune combination therapy of MSS colorectal cancer [J]. Journal of International Oncology, 2023, 50(3): 186-190. | 
| [10] | Zhu Yi, Chen Jian. Mechanism of hydrogen sulfide in tumorigenesis and development and its donor-mediated anti-tumor effects [J]. Journal of International Oncology, 2023, 50(12): 729-733. | 
| [11] | Xie Lulu, Ding Jianghua. Progress of immunotherapy-based strategy in triple-negative breast cancer [J]. Journal of International Oncology, 2023, 50(11): 672-676. | 
| [12] | Tao Hong, Yin Hong, Luo Hong, Tao Jiayu. Potential strategies for targeting tumor-associated macrophages to enhance the efficacy of immune checkpoint inhibitors for colorectal cancer [J]. Journal of International Oncology, 2023, 50(11): 683-687. | 
| [13] | Ma Xueyan, Lu Lili, Sun Pengfei. Advances in the immune microenvironment in cervical cancer [J]. Journal of International Oncology, 2023, 50(1): 47-50. | 
| [14] | Wu Jiayu, Liu Jiacheng. Research progress of radiomics toward lung adenocarcinoma manifesting as solitary ground glass nodule [J]. Journal of International Oncology, 2022, 49(8): 449-452. | 
| [15] | Wu Jiayi, Chen Keyu, Shao Xiying, Wang Xiaojia. Research progress on the mechanism of CDK4/6 inhibitors promoting antitumor immunity by regulating the immune microenvironment of triple negative breast cancer [J]. Journal of International Oncology, 2022, 49(6): 362-365. | 
| Viewed | ||||||
| 
										Full text | 
									
										 | 
								|||||
| 
										Abstract | 
									
										 | 
								|||||
