Journal of International Oncology ›› 2023, Vol. 50 ›› Issue (3): 169-173.doi: 10.3760/cma.j.cn371439-20221121-00033
• Reviews • Previous Articles Next Articles
Cao Mengqing, Xu Zhiyong, Shi Yuting, Wang Kai()
Received:
2022-11-21
Revised:
2023-01-01
Online:
2023-03-08
Published:
2023-04-12
Contact:
Wang Kai, Email: Supported by:
Cao Mengqing, Xu Zhiyong, Shi Yuting, Wang Kai. Role of tertiary lymphoid structures in tumor immune microenvironment regulation and anti-tumor therapy[J]. Journal of International Oncology, 2023, 50(3): 169-173.
[1] |
Pfannstiel C, Strissel PL, Chiappinelli KB, et al. The tumor immune microenvironment drives a prognostic relevance that correlates with bladder cancer subtypes[J]. Cancer Immunol Res, 2019, 7(6): 923-938. DOI: 10.1158/2326-6066.CIR-18-0758.
doi: 10.1158/2326-6066.CIR-18-0758 pmid: 30988029 |
[2] |
Vaghjiani RG, Skitzki JJ. Tertiary lymphoid structures as mediators of immunotherapy response[J]. Cancers (Basel), 2022, 14(15): 3748. DOI: 10.3390/cancers14153748.
doi: 10.3390/cancers14153748 |
[3] |
Zhang Y, Wang F, Sun HR, et al. Apatinib combined with PD-L1 blockade synergistically enhances antitumor immune responses and promotes HEV formation in gastric cancer[J]. J Cancer Res Clin Oncol, 2021, 147(8): 2209-2222. DOI: 10.1007/s00432-021-03633-3.
doi: 10.1007/s00432-021-03633-3 pmid: 33891173 |
[4] |
Cabrita R, Lauss M, Sanna A, et al. Tertiary lymphoid structures improve immunotherapy and survival in melanoma[J]. Nature, 2020, 577(7791): 561-565. DOI: 10.1038/s41586-019-1914-8.
doi: 10.1038/s41586-019-1914-8 |
[5] |
Jia W, Zhang T, Yao Q, et al. Tertiary lymphatic structures in primary hepatic carcinoma: controversy cannot overshadow hope[J]. Front Immunol, 2022, 13: 870458. DOI: 10.3389/fimmu.2022.870458.
doi: 10.3389/fimmu.2022.870458 |
[6] |
Dieudé M, Kaci I, Hébert MJ. The impact of programmed cell death on the formation of tertiary lymphoid structures[J]. Front Immunol, 2021, 12: 696311. DOI: 10.3389/fimmu.2021.696311.
doi: 10.3389/fimmu.2021.696311 |
[7] |
Schumacher TN, Thommen DS. Tertiary lymphoid structures in cancer[J]. Science, 2022, 375(6576): eabf9419. DOI: 10.1126/science.abf9419.
doi: 10.1126/science.abf9419 |
[8] |
Koning JJ, Mebius RE. Stromal cells and immune cells involved in formation of lymph nodes and their niches[J]. Curr Opin Immunol, 2020, 64: 20-25. DOI: 10.1016/j.coi.2020.03.003.
doi: S0952-7915(20)30026-1 pmid: 32325389 |
[9] |
KleinJan A, van Nimwegen M, Leman K, et al. Involvement of dendritic cells and Th17 cells in induced tertiary lymphoid structures in a chronic beryllium disease mouse model[J]. Mediators Inflamm, 2021, 2021: 8845966. DOI: 10.1155/2021/8845966.
doi: 10.1155/2021/8845966 |
[10] |
Coleby R, Lucchesi D, Pontarini E, et al. Stepwise changes in the murine salivary gland immune response during virally-induced ectopic lymphoid structure formation[J]. Clin Exp Rheumatol, 2021, 39 Suppl 133(6):39-48. DOI: 10.55563/clinexprheumatol/gb7pfc.
doi: 10.55563/clinexprheumatol/gb7pfc pmid: 34596023 |
[11] |
Hill DG, Ward A, Nicholson LB, et al. Emerging roles for IL-6 family cytokines as positive and negative regulators of ectopic lymphoid structures[J]. Cytokine, 2021, 146: 155650. DOI: 10.1016/j.cyto.2021.155650.
doi: 10.1016/j.cyto.2021.155650 |
[12] |
N J, J T, Sl N, et al. Tertiary lymphoid structures and B lymphocytes in cancer prognosis and response to immunotherapies[J]. Oncoimmunology, 2021, 10(1): 1900508. DOI: 10.1080/2162402X.2021.1900508.
doi: 10.1080/2162402X.2021.1900508 |
[13] |
Simmons S, Sasaki N, Umemoto E, et al. High-endothelial cell-derived S1P regulates dendritic cell localization and vascular integrity in the lymph node[J]. Elife, 2019, 8: e41239. DOI: 10.7554/eLife.41239.
doi: 10.7554/eLife.41239 |
[14] |
Tooley KA, Escobar G, Anderson AC. Spatial determinants of CD8+ T cell differentiation in cancer[J]. Trends Cancer, 2022, 8(8): 642-654. DOI: 10.1016/j.trecan.2022.04.003.
doi: 10.1016/j.trecan.2022.04.003 |
[15] |
Asrir A, Tardiveau C, Coudert J, et al. Tumor-associated high endothelial venules mediate lymphocyte entry into tumors and predict response to PD-1 plus CTLA-4 combination immunotherapy[J]. Cancer Cell, 2022, 40(3): 318-334. e9. DOI: 10.1016/j.ccell.2022.01.002.
doi: 10.1016/j.ccell.2022.01.002 pmid: 35120598 |
[16] |
Dangaj D, Bruand M, Grimm AJ, et al. Cooperation between constitutive and inducible chemokines enables T cell engraftment and immune attack in solid tumors[J]. Cancer Cell, 2019, 35(6): 885-900. e10. DOI: 10.1016/j.ccell.2019.05.004.
doi: S1535-6108(19)30242-9 pmid: 31185212 |
[17] |
Woods AN, Wilson AL, Srivinisan N, et al. Differential expression of homing receptor ligands on tumor-associated vasculature that control CD8 effector t-cell entry[J]. Cancer Immunol Res, 2017, 5(12): 1062-1073. DOI: 10.1158/2326-6066.CIR-17-0190.
doi: 10.1158/2326-6066.CIR-17-0190 pmid: 29097419 |
[18] |
Patil NS, Nabet BY, Müller S, et al. Intratumoral plasma cells predict outcomes to PD-L1 blockade in non-small cell lung cancer[J]. Cancer Cell, 2022, 40(3): 289-300. e4. DOI: 10.1016/j.ccell.2022.02.002.
doi: 10.1016/j.ccell.2022.02.002 pmid: 35216676 |
[19] |
Siddiqui I, Schaeuble K, Chennupati V, et al. Intratumoral Tcf1+ PD-1+ CD8+ T cells with stem-like properties promote tumor control in response to vaccination and checkpoint blockade immunotherapy[J]. Immunity, 2019, 50(1): 195-211. e10. DOI: 10.1016/j.immuni.2018.12.021.
doi: S1074-7613(18)30569-7 pmid: 30635237 |
[20] |
Kurtulus S, Madi A, Escobar G, et al. Checkpoint blockade immunotherapy induces dynamic changes in PD-1- CD8+ tumor-infiltrating T cells[J]. Immunity, 2019, 50(1): 181-194. e6. DOI: 10.1016/j.immuni.2018.11.014.
doi: S1074-7613(18)30522-3 pmid: 30635236 |
[21] |
Di Pilato M, Kfuri-Rubens R, Pruessmann JN, et al. CXCR6 positions cytotoxic T cells to receive critical survival signals in the tumor microenvironment[J]. Cell, 2021, 184(17): 4512-4530. e22. DOI: 10.1016/j.cell.2021.07.015.
doi: 10.1016/j.cell.2021.07.015 pmid: 34343496 |
[22] |
Mustapha R, Ng K, Monypenny J, et al. Insights into unveiling a potential role of tertiary lymphoid structures in metastasis[J]. Front Mol Biosci, 2021, 8: 661516. DOI: 10.3389/fmolb.2021.661516.
doi: 10.3389/fmolb.2021.661516 |
[23] |
Kuwabara S, Tsuchikawa T, Nakamura T, et al. Prognostic rele-vance of tertiary lymphoid organs following neoadjuvant chemoradiotherapy in pancreatic ductal adenocarcinoma[J]. Cancer Sci, 2019, 110(6): 1853-1862. DOI: 10.1111/cas.14023.
doi: 10.1111/cas.14023 |
[24] |
Boivin G, Kalambaden P, Faget J, et al. Cellular composition and contribution of tertiary lymphoid structures to tumor immune infiltration and modulation by radiation therapy[J]. Front Oncol, 2018, 8: 256. DOI: 10.3389/fonc.2018.00256.
doi: 10.3389/fonc.2018.00256 pmid: 30038899 |
[25] |
Lin Q, Tao P, Wang J, et al. Tumor-associated tertiary lymphoid structure predicts postoperative outcomes in patients with primary gastrointestinal stromal tumors[J]. Oncoimmunology, 2020, 9(1): 1747339. DOI: 10.1080/2162402X.2020.1747339.
doi: 10.1080/2162402X.2020.1747339 |
[26] |
Inoue H, Horii R, Ito Y, et al. Tumor-infiltrating lymphocytes affect the efficacy of trastuzumab-based treatment in human epidermal growth factor receptor 2-positive breast cancer[J]. Breast Cancer, 2018, 25(3): 268-274. DOI: 10.1007/s12282-017-0822-8.
doi: 10.1007/s12282-017-0822-8 pmid: 29185202 |
[27] |
Qi Z, Xu Z, Zhang L, et al. Overcoming resistance to immune checkpoint therapy in PTEN-null prostate cancer by intermittent anti-PI3Kα/β/δ treatment[J]. Nat Commun, 2022, 13(1): 182. DOI: 10.1038/s41467-021-27833-0.
doi: 10.1038/s41467-021-27833-0 pmid: 35013322 |
[28] |
van Dijk N, Gil-Jimenez A, Silina K, et al. Preoperative ipilimumab plus nivolumab in locoregionally advanced urothelial cancer: the NABUCCO trial[J]. Nat Med, 2020, 26(12): 1839-1844. DOI: 10.1038/s41591-020-1085-z.
doi: 10.1038/s41591-020-1085-z pmid: 33046870 |
[29] |
Vanhersecke L, Brunet M, Guégan JP, et al. Mature tertiary lymphoid structures predict immune checkpoint inhibitor efficacy in solid tumors independently of PD-L1 expression[J]. Nat Cancer, 2021, 2(8): 794-802. DOI: 10.1038/s43018-021-00232-6.
doi: 10.1038/s43018-021-00232-6 |
[30] |
Gray KD, McCloskey JE, Vedvyas Y, et al. PD1 blockade enhances ICAM1-directed CAR T therapeutic efficacy in advanced thyroid cancer[J]. Clin Cancer Res, 2020, 26(22): 6003-6016. DOI: 10.1158/1078-0432.CCR-20-1523.
doi: 10.1158/1078-0432.CCR-20-1523 |
[31] |
Zhang W, Huang Q, Xiao W, et al. Advances in anti-tumor treatments targeting the CD47/SIRPα axis[J]. Front Immunol, 2020, 11: 18. DOI: 10.3389/fimmu.2020.00018.
doi: 10.3389/fimmu.2020.00018 pmid: 32082311 |
[32] |
Li H, Wang J, Liu H, et al. Existence of intratumoral tertiary lymphoid structures is associated with immune cells infiltration and predicts better prognosis in early-stage hepatocellular carcinoma[J]. Aging (Albany NY), 2020, 12(4): 3451-3472. DOI: 10.18632/aging.102821.
doi: 10.18632/aging.102821 |
[33] |
Ding GY, Ma JQ, Yun JP, et al. Distribution and density of tertiary lymphoid structures predict clinical outcome in intrahepatic cholangiocarcinoma[J]. J Hepatol, 2022, 76(3): 608-618. DOI: 10.1016/j.jhep.2021.10.030.
doi: 10.1016/j.jhep.2021.10.030 |
[34] |
Li H, Liu H, Fu H, et al. Peritumoral tertiary lymphoid structures correlate with protective immunity and improved prognosis in patients with hepatocellular carcinoma[J]. Front Immunol, 2021, 12: 648812. DOI: 10.3389/fimmu.2021.648812.
doi: 10.3389/fimmu.2021.648812 |
[35] |
Park HS, Kim YM, Kim S, et al. High endothelial venule is a surrogate biomarker for T-cell inflamed tumor microenvironment and prognosis in gastric cancer[J]. J Immunother Cancer, 2021, 9(10): e003353. DOI: 10.1136/jitc-2021-003353.
doi: 10.1136/jitc-2021-003353 |
[36] |
Zhan Z, Shi-Jin L, Yi-Ran Z, et al. High endothelial venules proportion in tertiary lymphoid structure is a prognostic marker and correlated with anti-tumor immune microenvironment in colorectal cancer[J]. Ann Med, 2023, 55(1): 114-126. DOI: 10.1080/07853890.2022.2153911.
doi: 10.1080/07853890.2022.2153911 pmid: 36503344 |
[37] |
J Gunderson A, Rajamanickam V, Bui C, et al. Germinal center reactions in tertiary lymphoid structures associate with neoantigen burden, humoral immunity and long-term survivorship in pancreatic cancer[J]. Oncoimmunology, 2021, 10(1): 1900635. DOI: 10.1080/2162402X.2021.1900635.
doi: 10.1080/2162402X.2021.1900635 |
[38] |
Ruffin AT, Cillo AR, Tabib T, et al. B cell signatures and tertiary lymphoid structures contribute to outcome in head and neck squamous cell carcinoma[J]. Nat Commun, 2021, 12(1): 3349. DOI: 10.1038/s41467-021-23355-x.
doi: 10.1038/s41467-021-23355-x pmid: 34099645 |
[39] |
Meylan M, Petitprez F, Lacroix L, et al. Early hepatic lesions display immature tertiary lymphoid structures and show elevated expression of immune inhibitory and immunosuppressive molecules[J]. Clin Cancer Res, 2020, 26(16): 4381-4389. DOI: 10.1158/1078-0432.CCR-19-2929.
doi: 10.1158/1078-0432.CCR-19-2929 pmid: 32269054 |
[1] | Qian Xiaotao, Shi Ziyi, Hu Ge, Wu Xiaowei. Efficacy of consolidation chemotherapy after radical radiotherapy and chemotherapy for stage Ⅲ-ⅣA esophageal squamous cell carcinoma: a real-world clinical study [J]. Journal of International Oncology, 2024, 51(6): 326-331. |
[2] | Fu Yi, Ma Chenying, Zhang Lu, Zhou Juying. Research progress of habitat analysis in radiomics of malignant tumors [J]. Journal of International Oncology, 2024, 51(5): 292-297. |
[3] | Wang Kun, Zhou Zhongxin, Zang Qiwei. Predictive value of serum TGF-β1 and VEGF levels in patients with non-small cell lung cancer after single-port thoracoscopic radical resection [J]. Journal of International Oncology, 2024, 51(4): 198-203. |
[4] | Yang Zhi, Lu Yiqiao, Gu Huayan, Ding Jialing, Guo Guilong. Research progress of tumor microenvironment mediated drug resistance in targeted therapy of breast cancer [J]. Journal of International Oncology, 2024, 51(4): 235-238. |
[5] | Yan Aiting, Wang Cuizhu, Liu Chungui, Lu Xiaomin. Clinical efficacy and safety of camrelizumab and sintilimab in the treatment of advanced non-small cell lung cancer [J]. Journal of International Oncology, 2024, 51(3): 137-142. |
[6] | Jiang Xi, Wu Yongcun, Liang Yan, Chu Li, Duan Yingxin, Wang Lijun, Huo Junjie. Impact of pembrolizumab combined with chemotherapy on angiogenesis and circulating endothelial cells in patients with advanced non-small cell lung cancer [J]. Journal of International Oncology, 2024, 51(2): 89-94. |
[7] | Gao Xinyu, Li Zhenjiang, Sun Hongfu, Han Dan, Zhao Qian, Liu Chengxin, Huang Wei. Clinical application of MR-guided radiotherapy based on MR-linac in esophageal cancer patients [J]. Journal of International Oncology, 2024, 51(1): 37-42. |
[8] | Liu Xiaodi, Su Jianfei, Zhang Jingxian, Wei Xueqin, Jia Yingjie. Research progress of myeloid-derived suppressor cells in tumor angiogenesis [J]. Journal of International Oncology, 2024, 51(1): 50-54. |
[9] | Gu Huayan, Zhu Teng, Guo Guilong. Breast microbiota and breast cancer: present and future [J]. Journal of International Oncology, 2024, 51(1): 55-58. |
[10] | Xu Meng, Jiang Wei, Zhu Haitao, Cao Xiongfeng. Research progress of cancer-associated fibroblasts in tumor radiotherapy resistance [J]. Journal of International Oncology, 2023, 50(4): 227-230. |
[11] | Ding Hao, Ying Jintao, Fu Maoyong. Research progress of CAR-T in the treatment of esophageal squamous cell carcinoma [J]. Journal of International Oncology, 2023, 50(4): 231-235. |
[12] | Zhou Ting, Xu Shaohua, Mei Lin. Efficacy and safety of bevacizumab combined with capecitabine in the treatment of advanced breast cancer [J]. Journal of International Oncology, 2023, 50(3): 144-149. |
[13] | Xu Liangfu, Li Yuanfei. Research progress on tumor microenvironment and immune combination therapy of MSS colorectal cancer [J]. Journal of International Oncology, 2023, 50(3): 186-190. |
[14] | Zhu Yi, Chen Jian. Mechanism of hydrogen sulfide in tumorigenesis and development and its donor-mediated anti-tumor effects [J]. Journal of International Oncology, 2023, 50(12): 729-733. |
[15] | Wang Bing, Wang Aifu, Liu Wenshu, Fan Jiaojiao, Tian Weicheng, Wang Weili, Liu Boyu. The efficacy and safety of recombinant human thrombopoietin in the treatment of thrombocytopenia caused by tumor radiotherapy [J]. Journal of International Oncology, 2023, 50(11): 661-667. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||