Journal of International Oncology ›› 2022, Vol. 49 ›› Issue (6): 362-365.doi: 10.3760/cma.j.cn371439-20211215-00069
• Reviews • Previous Articles Next Articles
Wu Jiayi1, Chen Keyu1, Shao Xiying2(), Wang Xiaojia2()
Received:
2021-12-15
Revised:
2022-01-13
Online:
2022-06-08
Published:
2022-06-30
Contact:
Shao Xiying,Wang Xiaojia
E-mail:shaoxy@zjcc.org.cn;wangxj@zjcc.org.cn
Supported by:
Wu Jiayi, Chen Keyu, Shao Xiying, Wang Xiaojia. Research progress on the mechanism of CDK4/6 inhibitors promoting antitumor immunity by regulating the immune microenvironment of triple negative breast cancer[J]. Journal of International Oncology, 2022, 49(6): 362-365.
[1] |
Shen M, Pan H, Chen Y, et al. A review of current progress in triple-negative breast cancer therapy[J]. Open Med (Wars), 2020, 15(1): 1143-1149. DOI: 10.1515/med-2020-0138.
doi: 10.1515/med-2020-0138 |
[2] |
Cortes J, Cescon DW, Rugo HS, et al. Pembrolizumab plus chemotherapy versus placebo plus chemotherapy for previously untreated locally recurrent inoperable or metastatic triple-negative breast cancer (KEYNOTE-355): a randomised, placebo-controlled, double-blind, phase 3 clinical trial[J]. Lancet, 2020, 396(10265): 1817-1828. DOI: 10.1016/S0140-6736(20)32531-9.
doi: 10.1016/S0140-6736(20)32531-9 |
[3] |
de Melo Gagliato D, C Buzaid A, Perez-Garcia JM, et al. CDK4/6 inhibitors in hormone receptor-positive metastatic breast cancer: current practice and knowledge[J]. Cancers (Basel), 2020, 12(9): 2480. DOI: 10.3390/cancers12092480.
doi: 10.3390/cancers12092480 |
[4] |
Roberts PJ, Kumarasamy V, Witkiewicz AK, et al. Chemotherapy and CDK4/6 inhibitors: unexpected bedfellows[J]. Mol Cancer Ther, 2020, 19(8): 1575-1588. DOI: 10.1158/1535-7163.MCT-18-1161.
doi: 10.1158/1535-7163.MCT-18-1161 |
[5] |
Bonelli M, La Monica S, Fumarola C, et al. Multiple effects of CDK4/6 inhibition in cancer: from cell cycle arrest to immu-nomodulation[J]. Biochem Pharmacol, 2019, 170: 113676. DOI: 10.1016/j.bcp.2019.113676.
doi: 10.1016/j.bcp.2019.113676 |
[6] |
Uzhachenko RV, Bharti V, Ouyang Z, et al. Metabolic modulation by CDK4/6 inhibitor promotes chemokine-mediated recruitment of T cells into mammary tumors[J]. Cell Rep, 2021, 35(1): 108944. DOI: 10.1016/j.celrep.2021.108944.
doi: 10.1016/j.celrep.2021.108944 |
[7] |
Fleisher B, Lezeau J, Werkman C, et al. In vitro to clinical translation of combinatorial effects of doxorubicin and abemaciclib in Rb-positive triple negative breast cancer: a systems-based pharmacokinetic/pharmacodynamic modeling approach[J]. Breast Cancer (Dove Med Press), 2021, 13: 87-105. DOI: 10.2147/BCTT.S292161.
doi: 10.2147/BCTT.S292161 |
[8] |
Franzoi MA, de Azambuja E. Atezolizumab in metastatic triple-negative breast cancer: IMpassion130 and 131 trials-how to explain different results?[J]. ESMO Open, 2020, 5(6): e001112. DOI: 10.1136/esmoopen-2020-001112.
doi: 10.1136/esmoopen-2020-001112 |
[9] |
Ameratunga M, Kipps E, Okines AFC, et al. To cycle or Fight-CDK4/6 inhibitors at the crossroads of anticancer immunity[J]. Clin Cancer Res, 2019, 25(1): 21-28. DOI: 10.1158/1078-0432.CCR-18-1999.
doi: 10.1158/1078-0432.CCR-18-1999 pmid: 30224338 |
[10] |
Di Sante G, Pagé J, Jiao X, et al. Recent advances with cyclin-dependent kinase inhibitors: therapeutic agents for breast cancer and their role in immuno-oncology[J]. Expert Rev Anticancer Ther, 2019, 19(7): 569-587. DOI: 10.1080/14737140.2019.1615889.
doi: 10.1080/14737140.2019.1615889 |
[11] |
Zhang J, Bu X, Wang H, et al. Cyclin D-CDK4 kinase desta-bilizes PD-L1 via cullin 3-SPOP to control cancer immune surveillance[J]. Nature, 2018, 553(7686): 91-95. DOI: 10.1038/nature25015.
doi: 10.1038/nature25015 |
[12] |
Teh JLF, Aplin AE. Arrested developments: CDK4/6 inhibitor resis-tance and alterations in the tumor immune microenvironment[J]. Clin Cancer Res, 2019, 25(3): 921-927. DOI: 10.1158/1078-0432.CCR-18-1967.
doi: 10.1158/1078-0432.CCR-18-1967 |
[13] |
Zhang QF, Li J, Jiang K, et al. CDK4/6 inhibition promotes immune infiltration in ovarian cancer and synergizes with PD-1 blockade in a B cell-dependent manner[J]. Theranostics, 2020, 10(23): 10619-10633. DOI: 10.7150/thno.44871.
doi: 10.7150/thno.44871 |
[14] |
Schaer DA, Beckmann RP, Dempsey JA, et al. The CDK4/6 inhi-bitor abemaciclib induces a T cell inflamed tumor microenvironment and enhances the efficacy of PD-L1 checkpoint blockade[J]. Cell Rep, 2018, 22(11): 2978-2994. DOI: 10.1016/j.celrep.2018.02.053.
doi: S2211-1247(18)30234-1 pmid: 29539425 |
[15] |
Charles A, Bourne CM, Korontsvit T, et al. Low-dose CDK4/6 inhibitors induce presentation of pathway specific MHC ligands as potential targets for cancer immunotherapy[J]. Oncoimmunology, 2021, 10(1): 1916243. DOI: 10.1080/2162402X.2021.1916243.
doi: 10.1080/2162402X.2021.1916243 |
[16] |
Goel S, DeCristo MJ, Watt AC, et al. CDK4/6 inhibition triggers anti-tumour immunity[J]. Nature, 2017, 548(7668): 471-475. DOI: 10.1038/nature23465.
doi: 10.1038/nature23465 |
[17] |
Petroni G, Formenti SC, Chen-Kiang S, et al. Immunomodulation by anticancer cell cycle inhibitors[J]. Nat Rev Immunol, 2020, 20(11): 669-679. DOI: 10.1038/s41577-020-0300-y.
doi: 10.1038/s41577-020-0300-y |
[18] |
Huang H, Zhou J, Chen H, et al. The immunomodulatory effects of endocrine therapy in breast cancer[J]. J Exp Clin Cancer Res, 2021, 40(1): 19. DOI: 10.1186/s13046-020-01788-4.
doi: 10.1186/s13046-020-01788-4 |
[19] |
Heckler M, Ali LR, Clancy-Thompson E, et al. Inhibition of CDK4/6 promotes CD8 T-cell memory formation[J]. Cancer Discov, 2021, 11(10): 2564-2581. DOI: 10.1158/2159-8290.CD-20-1540.
doi: 10.1158/2159-8290.CD-20-1540 pmid: 33941591 |
[20] |
Lai AY, Sorrentino JA, Dragnev KH, et al. CDK4/6 inhibition enhances antitumor efficacy of chemotherapy and immune checkpoint inhibitor combinations in preclinical models and enhances T-cell activation in patients with SCLC receiving chemotherapy[J]. J Immunother Cancer, 2020, 8(2): e000847. DOI: 10.1136/jitc-2020-000847.
doi: 10.1136/jitc-2020-000847 |
[21] |
Sobhani N, D'Angelo A, Pittacolo M, et al. Updates on the CDK4/6 inhibitory strategy and combinations in breast cancer[J]. Cells, 2019, 8(4): 321. DOI: 10.3390/cells8040321.
doi: 10.3390/cells8040321 |
[22] |
Shen H, Yang ES, Conry M, et al. Predictive biomarkers for immune checkpoint blockade and opportunities for combination therapies[J]. Genes Dis, 2019, 6(3): 232-246. DOI: 10.1016/j.gendis.2019.06.006.
doi: 10.1016/j.gendis.2019.06.006 |
[23] |
Wang H, Najibi AJ, Sobral MC, et al. Biomaterial-based scaffold for in situ chemo-immunotherapy to treat poorly immunogenic tumors[J]. Nat Commun, 2020, 11(1): 5696. DOI: 10.1038/s41467-020-19540-z.
doi: 10.1038/s41467-020-19540-z pmid: 33173046 |
[24] |
Nedeljković M, Damjanović A. Mechanisms of chemotherapy resistance in triple-negative breast cancer—how we can rise to the challenge[J]. Cells, 2019, 8(9): 957. DOI: 10.3390/cells8090957.
doi: 10.3390/cells8090957 |
[25] |
Agostinetto E, Caparica R, Caparica E. CDK4/6 inhibition in HR-positive early breast cancer: are we putting all eggs in one basket?[J]. ESMO Open, 2020, 5(6): e001132. DOI: 10.1136/esmoopen-2020-001132.
doi: 10.1136/esmoopen-2020-001132 |
[26] |
Volpari T, de Santis F, Bracken AP, et al. Anticancer innovative therapy: highlights from the ninth annual meeting[J]. Cytokine Growth Factor Rev, 2020, 51: 1-9. DOI: 10.1016/j.cytogfr.2019. 12.002.
doi: 10.1016/j.cytogfr.2019. 12.002 |
[1] | Fu Yi, Ma Chenying, Zhang Lu, Zhou Juying. Research progress of habitat analysis in radiomics of malignant tumors [J]. Journal of International Oncology, 2024, 51(5): 292-297. |
[2] | Yang Zhi, Lu Yiqiao, Gu Huayan, Ding Jialing, Guo Guilong. Research progress of tumor microenvironment mediated drug resistance in targeted therapy of breast cancer [J]. Journal of International Oncology, 2024, 51(4): 235-238. |
[3] | Liu Xiaodi, Su Jianfei, Zhang Jingxian, Wei Xueqin, Jia Yingjie. Research progress of myeloid-derived suppressor cells in tumor angiogenesis [J]. Journal of International Oncology, 2024, 51(1): 50-54. |
[4] | Gu Huayan, Zhu Teng, Guo Guilong. Breast microbiota and breast cancer: present and future [J]. Journal of International Oncology, 2024, 51(1): 55-58. |
[5] | Pan Shulan, Liu Chang, He Ping. Effect of fritinib on angiogenesis, tumor growth and IRE1-ASK1-JNK pathway in triple negative breast cancer [J]. Journal of International Oncology, 2023, 50(8): 457-462. |
[6] | Xu Meng, Jiang Wei, Zhu Haitao, Cao Xiongfeng. Research progress of cancer-associated fibroblasts in tumor radiotherapy resistance [J]. Journal of International Oncology, 2023, 50(4): 227-230. |
[7] | Ding Hao, Ying Jintao, Fu Maoyong. Research progress of CAR-T in the treatment of esophageal squamous cell carcinoma [J]. Journal of International Oncology, 2023, 50(4): 231-235. |
[8] | Cao Mengqing, Xu Zhiyong, Shi Yuting, Wang Kai. Role of tertiary lymphoid structures in tumor immune microenvironment regulation and anti-tumor therapy [J]. Journal of International Oncology, 2023, 50(3): 169-173. |
[9] | Xu Liangfu, Li Yuanfei. Research progress on tumor microenvironment and immune combination therapy of MSS colorectal cancer [J]. Journal of International Oncology, 2023, 50(3): 186-190. |
[10] | Zhu Yi, Chen Jian. Mechanism of hydrogen sulfide in tumorigenesis and development and its donor-mediated anti-tumor effects [J]. Journal of International Oncology, 2023, 50(12): 729-733. |
[11] | Xie Lulu, Ding Jianghua. Progress of immunotherapy-based strategy in triple-negative breast cancer [J]. Journal of International Oncology, 2023, 50(11): 672-676. |
[12] | Tao Hong, Yin Hong, Luo Hong, Tao Jiayu. Potential strategies for targeting tumor-associated macrophages to enhance the efficacy of immune checkpoint inhibitors for colorectal cancer [J]. Journal of International Oncology, 2023, 50(11): 683-687. |
[13] | Ma Xueyan, Lu Lili, Sun Pengfei. Advances in the immune microenvironment in cervical cancer [J]. Journal of International Oncology, 2023, 50(1): 47-50. |
[14] | Wu Jiayu, Liu Jiacheng. Research progress of radiomics toward lung adenocarcinoma manifesting as solitary ground glass nodule [J]. Journal of International Oncology, 2022, 49(8): 449-452. |
[15] | Zhang Zishu, Wu Xinlin. Mechanism of action of lactic acid in tumor microenvironment and related treatment [J]. Journal of International Oncology, 2022, 49(6): 349-352. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||