
Journal of International Oncology ›› 2022, Vol. 49 ›› Issue (6): 362-365.doi: 10.3760/cma.j.cn371439-20211215-00069
• Reviews • Previous Articles Next Articles
					
													Wu Jiayi1, Chen Keyu1, Shao Xiying2(
), Wang Xiaojia2(
)
												  
						
						
						
					
				
Received:2021-12-15
															
							
																	Revised:2022-01-13
															
							
															
							
																	Online:2022-06-08
															
							
																	Published:2022-06-30
															
						Contact:
								Shao Xiying,Wang Xiaojia   
																	E-mail:shaoxy@zjcc.org.cn;wangxj@zjcc.org.cn
																					Supported by:Wu Jiayi, Chen Keyu, Shao Xiying, Wang Xiaojia. Research progress on the mechanism of CDK4/6 inhibitors promoting antitumor immunity by regulating the immune microenvironment of triple negative breast cancer[J]. Journal of International Oncology, 2022, 49(6): 362-365.
| [1] |  
											 Shen M, Pan H, Chen Y, et al.  A review of current progress in triple-negative breast cancer therapy[J]. Open Med (Wars), 2020, 15(1): 1143-1149. DOI: 10.1515/med-2020-0138. 
																							 doi: 10.1515/med-2020-0138  | 
										
| [2] |  
											 Cortes J, Cescon DW, Rugo HS, et al.  Pembrolizumab plus chemotherapy versus placebo plus chemotherapy for previously untreated locally recurrent inoperable or metastatic triple-negative breast cancer (KEYNOTE-355): a randomised, placebo-controlled, double-blind, phase 3 clinical trial[J]. Lancet, 2020, 396(10265): 1817-1828. DOI: 10.1016/S0140-6736(20)32531-9. 
																							 doi: 10.1016/S0140-6736(20)32531-9  | 
										
| [3] |  
											 de Melo Gagliato D, C Buzaid A, Perez-Garcia JM, et al.  CDK4/6 inhibitors in hormone receptor-positive metastatic breast cancer: current practice and knowledge[J]. Cancers (Basel), 2020, 12(9): 2480. DOI: 10.3390/cancers12092480. 
																							 doi: 10.3390/cancers12092480  | 
										
| [4] |  
											 Roberts PJ, Kumarasamy V, Witkiewicz AK, et al.  Chemotherapy and CDK4/6 inhibitors: unexpected bedfellows[J]. Mol Cancer Ther, 2020, 19(8): 1575-1588. DOI: 10.1158/1535-7163.MCT-18-1161. 
																							 doi: 10.1158/1535-7163.MCT-18-1161  | 
										
| [5] |  
											 Bonelli M, La Monica S, Fumarola C, et al.  Multiple effects of CDK4/6 inhibition in cancer: from cell cycle arrest to immu-nomodulation[J]. Biochem Pharmacol, 2019, 170: 113676. DOI: 10.1016/j.bcp.2019.113676. 
																							 doi: 10.1016/j.bcp.2019.113676  | 
										
| [6] |  
											 Uzhachenko RV, Bharti V, Ouyang Z, et al.  Metabolic modulation by CDK4/6 inhibitor promotes chemokine-mediated recruitment of T cells into mammary tumors[J]. Cell Rep, 2021, 35(1): 108944. DOI: 10.1016/j.celrep.2021.108944. 
																							 doi: 10.1016/j.celrep.2021.108944  | 
										
| [7] |  
											 Fleisher B, Lezeau J, Werkman C, et al.  In vitro to clinical translation of combinatorial effects of doxorubicin and abemaciclib in Rb-positive triple negative breast cancer: a systems-based pharmacokinetic/pharmacodynamic modeling approach[J]. Breast Cancer (Dove Med Press), 2021, 13: 87-105. DOI: 10.2147/BCTT.S292161. 
																							 doi: 10.2147/BCTT.S292161  | 
										
| [8] |  
											 Franzoi MA, de Azambuja E. Atezolizumab in metastatic triple-negative breast cancer: IMpassion130 and 131 trials-how to explain different results?[J]. ESMO Open, 2020, 5(6): e001112. DOI: 10.1136/esmoopen-2020-001112. 
																							 doi: 10.1136/esmoopen-2020-001112  | 
										
| [9] |  
											 Ameratunga M, Kipps E, Okines AFC, et al.  To cycle or Fight-CDK4/6 inhibitors at the crossroads of anticancer immunity[J]. Clin Cancer Res, 2019, 25(1): 21-28. DOI: 10.1158/1078-0432.CCR-18-1999. 
																							 doi: 10.1158/1078-0432.CCR-18-1999 pmid: 30224338  | 
										
| [10] |  
											 Di Sante G, Pagé J, Jiao X, et al.  Recent advances with cyclin-dependent kinase inhibitors: therapeutic agents for breast cancer and their role in immuno-oncology[J]. Expert Rev Anticancer Ther, 2019, 19(7): 569-587. DOI: 10.1080/14737140.2019.1615889. 
																							 doi: 10.1080/14737140.2019.1615889  | 
										
| [11] |  
											 Zhang J, Bu X, Wang H, et al. Cyclin D-CDK4 kinase desta-bilizes PD-L1 via cullin 3-SPOP to control cancer immune surveillance[J]. Nature, 2018, 553(7686): 91-95. DOI: 10.1038/nature25015. 
																							 doi: 10.1038/nature25015  | 
										
| [12] |  
											 Teh JLF, Aplin AE. Arrested developments: CDK4/6 inhibitor resis-tance and alterations in the tumor immune microenvironment[J]. Clin Cancer Res, 2019, 25(3): 921-927. DOI: 10.1158/1078-0432.CCR-18-1967. 
																							 doi: 10.1158/1078-0432.CCR-18-1967  | 
										
| [13] |  
											 Zhang QF, Li J, Jiang K, et al.  CDK4/6 inhibition promotes immune infiltration in ovarian cancer and synergizes with PD-1 blockade in a B cell-dependent manner[J]. Theranostics, 2020, 10(23): 10619-10633. DOI: 10.7150/thno.44871. 
																							 doi: 10.7150/thno.44871  | 
										
| [14] |  
											 Schaer DA, Beckmann RP, Dempsey JA, et al. The CDK4/6 inhi-bitor abemaciclib induces a T cell inflamed tumor microenvironment and enhances the efficacy of PD-L1 checkpoint blockade[J]. Cell Rep, 2018, 22(11): 2978-2994. DOI: 10.1016/j.celrep.2018.02.053. 
																							 doi: S2211-1247(18)30234-1 pmid: 29539425  | 
										
| [15] |  
											 Charles A, Bourne CM, Korontsvit T, et al.  Low-dose CDK4/6 inhibitors induce presentation of pathway specific MHC ligands as potential targets for cancer immunotherapy[J]. Oncoimmunology, 2021, 10(1): 1916243. DOI: 10.1080/2162402X.2021.1916243. 
																							 doi: 10.1080/2162402X.2021.1916243  | 
										
| [16] |  
											 Goel S, DeCristo MJ, Watt AC, et al.  CDK4/6 inhibition triggers anti-tumour immunity[J]. Nature, 2017, 548(7668): 471-475. DOI: 10.1038/nature23465. 
																							 doi: 10.1038/nature23465  | 
										
| [17] |  
											 Petroni G, Formenti SC, Chen-Kiang S, et al.  Immunomodulation by anticancer cell cycle inhibitors[J]. Nat Rev Immunol, 2020, 20(11): 669-679. DOI: 10.1038/s41577-020-0300-y. 
																							 doi: 10.1038/s41577-020-0300-y  | 
										
| [18] |  
											 Huang H, Zhou J, Chen H, et al.  The immunomodulatory effects of endocrine therapy in breast cancer[J]. J Exp Clin Cancer Res, 2021, 40(1): 19. DOI: 10.1186/s13046-020-01788-4. 
																							 doi: 10.1186/s13046-020-01788-4  | 
										
| [19] |  
											 Heckler M, Ali LR, Clancy-Thompson E, et al.  Inhibition of CDK4/6 promotes CD8 T-cell memory formation[J]. Cancer Discov, 2021, 11(10): 2564-2581. DOI: 10.1158/2159-8290.CD-20-1540. 
																							 doi: 10.1158/2159-8290.CD-20-1540 pmid: 33941591  | 
										
| [20] |  
											 Lai AY, Sorrentino JA, Dragnev KH, et al.  CDK4/6 inhibition enhances antitumor efficacy of chemotherapy and immune checkpoint inhibitor combinations in preclinical models and enhances T-cell activation in patients with SCLC receiving chemotherapy[J]. J Immunother Cancer, 2020, 8(2): e000847. DOI: 10.1136/jitc-2020-000847. 
																							 doi: 10.1136/jitc-2020-000847  | 
										
| [21] |  
											 Sobhani N, D'Angelo A, Pittacolo M, et al.  Updates on the CDK4/6 inhibitory strategy and combinations in breast cancer[J]. Cells, 2019, 8(4): 321. DOI: 10.3390/cells8040321. 
																							 doi: 10.3390/cells8040321  | 
										
| [22] |  
											 Shen H, Yang ES, Conry M, et al.  Predictive biomarkers for immune checkpoint blockade and opportunities for combination therapies[J]. Genes Dis, 2019, 6(3): 232-246. DOI: 10.1016/j.gendis.2019.06.006. 
																							 doi: 10.1016/j.gendis.2019.06.006  | 
										
| [23] |  
											 Wang H, Najibi AJ, Sobral MC, et al.  Biomaterial-based scaffold for in situ chemo-immunotherapy to treat poorly immunogenic tumors[J]. Nat Commun, 2020, 11(1): 5696. DOI: 10.1038/s41467-020-19540-z. 
																							 doi: 10.1038/s41467-020-19540-z pmid: 33173046  | 
										
| [24] |  
											 Nedeljković M, Damjanović A. Mechanisms of chemotherapy resistance in triple-negative breast cancer—how we can rise to the challenge[J]. Cells, 2019, 8(9): 957. DOI: 10.3390/cells8090957. 
																							 doi: 10.3390/cells8090957  | 
										
| [25] |  
											 Agostinetto E, Caparica R, Caparica E. CDK4/6 inhibition in HR-positive early breast cancer: are we putting all eggs in one basket?[J]. ESMO Open, 2020, 5(6): e001132. DOI: 10.1136/esmoopen-2020-001132. 
																							 doi: 10.1136/esmoopen-2020-001132  | 
										
| [26] |  
											 Volpari T, de Santis F, Bracken AP, et al.  Anticancer innovative therapy: highlights from the ninth annual meeting[J]. Cytokine Growth Factor Rev, 2020, 51: 1-9. DOI: 10.1016/j.cytogfr.2019. 12.002. 
																							 doi: 10.1016/j.cytogfr.2019. 12.002  | 
										
| [1] | Fu Yi, Ma Chenying, Zhang Lu, Zhou Juying. Research progress of habitat analysis in radiomics of malignant tumors [J]. Journal of International Oncology, 2024, 51(5): 292-297. | 
| [2] | Yang Zhi, Lu Yiqiao, Gu Huayan, Ding Jialing, Guo Guilong. Research progress of tumor microenvironment mediated drug resistance in targeted therapy of breast cancer [J]. Journal of International Oncology, 2024, 51(4): 235-238. | 
| [3] | Liu Xiaodi, Su Jianfei, Zhang Jingxian, Wei Xueqin, Jia Yingjie. Research progress of myeloid-derived suppressor cells in tumor angiogenesis [J]. Journal of International Oncology, 2024, 51(1): 50-54. | 
| [4] | Gu Huayan, Zhu Teng, Guo Guilong. Breast microbiota and breast cancer: present and future [J]. Journal of International Oncology, 2024, 51(1): 55-58. | 
| [5] | Pan Shulan, Liu Chang, He Ping. Effect of fritinib on angiogenesis, tumor growth and IRE1-ASK1-JNK pathway in triple negative breast cancer [J]. Journal of International Oncology, 2023, 50(8): 457-462. | 
| [6] | Xu Meng, Jiang Wei, Zhu Haitao, Cao Xiongfeng. Research progress of cancer-associated fibroblasts in tumor radiotherapy resistance [J]. Journal of International Oncology, 2023, 50(4): 227-230. | 
| [7] | Ding Hao, Ying Jintao, Fu Maoyong. Research progress of CAR-T in the treatment of esophageal squamous cell carcinoma [J]. Journal of International Oncology, 2023, 50(4): 231-235. | 
| [8] | Cao Mengqing, Xu Zhiyong, Shi Yuting, Wang Kai. Role of tertiary lymphoid structures in tumor immune microenvironment regulation and anti-tumor therapy [J]. Journal of International Oncology, 2023, 50(3): 169-173. | 
| [9] | Xu Liangfu, Li Yuanfei. Research progress on tumor microenvironment and immune combination therapy of MSS colorectal cancer [J]. Journal of International Oncology, 2023, 50(3): 186-190. | 
| [10] | Zhu Yi, Chen Jian. Mechanism of hydrogen sulfide in tumorigenesis and development and its donor-mediated anti-tumor effects [J]. Journal of International Oncology, 2023, 50(12): 729-733. | 
| [11] | Xie Lulu, Ding Jianghua. Progress of immunotherapy-based strategy in triple-negative breast cancer [J]. Journal of International Oncology, 2023, 50(11): 672-676. | 
| [12] | Tao Hong, Yin Hong, Luo Hong, Tao Jiayu. Potential strategies for targeting tumor-associated macrophages to enhance the efficacy of immune checkpoint inhibitors for colorectal cancer [J]. Journal of International Oncology, 2023, 50(11): 683-687. | 
| [13] | Ma Xueyan, Lu Lili, Sun Pengfei. Advances in the immune microenvironment in cervical cancer [J]. Journal of International Oncology, 2023, 50(1): 47-50. | 
| [14] | Wu Jiayu, Liu Jiacheng. Research progress of radiomics toward lung adenocarcinoma manifesting as solitary ground glass nodule [J]. Journal of International Oncology, 2022, 49(8): 449-452. | 
| [15] | Zhang Zishu, Wu Xinlin. Mechanism of action of lactic acid in tumor microenvironment and related treatment [J]. Journal of International Oncology, 2022, 49(6): 349-352. | 
| Viewed | ||||||
| 
										Full text | 
									
										 | 
								|||||
| 
										Abstract | 
									
										 | 
								|||||