Journal of International Oncology ›› 2023, Vol. 50 ›› Issue (11): 683-687.doi: 10.3760/cma.j.cn371439-20230725-00129
• Reviews • Previous Articles Next Articles
Tao Hong, Yin Hong(), Luo Hong, Tao Jiayu
Received:
2023-07-25
Revised:
2023-10-12
Online:
2023-11-08
Published:
2024-01-11
Contact:
Yin Hong
E-mail:hongyin_74@126.com
Tao Hong, Yin Hong, Luo Hong, Tao Jiayu. Potential strategies for targeting tumor-associated macrophages to enhance the efficacy of immune checkpoint inhibitors for colorectal cancer[J]. Journal of International Oncology, 2023, 50(11): 683-687.
[1] | Katsaounou K, Nicolaou E, Vogazianos P, et al. Colon cancer: from epidemiology to prevention[J]. Metabolites, 2022, 12(6): 499. DOI: 10.3390/metabo12060499. |
[2] | Li J, Chen D, Shen M. Tumor microenvironment shapes colorectal cancer progression, metastasis, and treatment responses[J]. Front Med (Lausanne), 2022, 9: 869010. DOI: 10.3389/fmed.2022.869010. |
[3] |
Chen Y, Song Y, Du W, et al. Tumor-associated macrophages: an accomplice in solid tumor progression[J]. J Biomed Sci, 2019, 26(1): 78. DOI: 10.1186/s12929-019-0568-z.
pmid: 31629410 |
[4] |
Li J, Li L, Li Y, et al. Tumor-associated macrophage infiltration and prognosis in colorectal cancer: systematic review and meta-analysis[J]. Int J Colorectal Dis, 2020, 35(7): 1203-1210. DOI: 10.1007/s00384-020-03593-z.
pmid: 32303831 |
[5] | Yin Y, Liu B, Cao Y, et al. Colorectal cancer-derived small extracellular vesicles promote tumor immune evasion by upregulating PD-L1 expression in tumor-associated macrophages[J]. Adv Sci (Weinh), 2022, 9(9): 2102620. DOI: 10.1002/advs.202102620. |
[6] | Li C, Xu X, Wei S, et al. Tumor-associated macrophages: potential therapeutic strategies and future prospects in cancer[J]. J Immunother Cancer, 2021, 9(1): e001341. DOI: 10.1136/jitc-2020-001341. |
[7] | Boutilier AJ, Elsawa SF. Macrophage polarization states in the tumor microenvironment[J]. Int J Mol Sci, 2021, 22(13): 6995. DOI: 10.3390/ijms22136995. |
[8] |
Wu K, Lin K, Li X, et al. Redefining tumor-associated macrophage subpopulations and functions in the tumor microenvironment[J]. Front Immunol, 2020, 11: 1731. DOI: 10.3389/fimmu.2020.01731.
pmid: 32849616 |
[9] |
Zhou J, Tang Z, Gao S, et al. Tumor-associated macrophages: recent insights and therapies[J]. Front Oncol, 2020, 10: 188. DOI: 10.3389/fonc.2020.00188.
pmid: 32161718 |
[10] |
Noy R, Pollard JW. Tumor-associated macrophages: from mechanisms to therapy[J]. Immunity, 2014, 41(1): 49-61. DOI: 10.1016/j.immuni.2014.06.010.
pmid: 25035953 |
[11] | Pan Y, Yu Y, Wang X, et al. Tumor-associated macrophages in tumor immunity[J]. Front Immunol, 2020, 11: 583084. DOI: 10.3389/fimmu.2020.583084. |
[12] |
Jeong H, Kim S, Hong BJ, et al. Tumor-associated macrophages enhance tumor hypoxia and aerobic glycolysis[J]. Cancer Res, 2019, 79(4): 795-806. DOI: 10.1158/0008-5472.CAN-18-2545.
pmid: 30610087 |
[13] |
Lan Q, Lai W, Zeng Y, et al. CCL26 participates in the PRL-3-induced promotion of colorectal cancer invasion by stimulating tumor-associated macrophage infiltration[J]. Mol Cancer Ther, 2018, 17(1): 276-289. DOI: 10.1158/1535-7163.MCT-17-0507.
pmid: 29051319 |
[14] | Liang ZX, Liu HS, Wang FW, et al. LncRNA RPPH1 promotes colorectal cancer metastasis by interacting with TUBB3 and by promoting exosomes-mediated macrophage M2 polarization[J]. Cell Death Dis, 2019, 10(11): 829. DOI: 10.1038/s41419-019-2077-0. |
[15] |
Huang C, Ou R, Chen X, et al. Tumor cell-derived SPON2 promotes M2-polarized tumor-associated macrophage infiltration and cancer progression by activating PYK2 in CRC[J]. J Exp Clin Cancer Res, 2021, 40(1): 304. DOI: 10.1186/s13046-021-02108-0.
pmid: 34583750 |
[16] |
Zhong Q, Fang Y, Lai Q, et al. CPEB3 inhibits epithelial-mesenchymal transition by disrupting the crosstalk between colorectal cancer cells and tumor-associated macrophages via IL-6R/STAT3 signaling[J]. J Exp Clin Cancer Res, 2020, 39(1): 132. DOI: 10.1186/s13046-020-01637-4.
pmid: 32653013 |
[17] | Liu C, Zhang W, Wang J, et al. Tumor-associated macrophage-derived transforming growth factor-β promotes colorectal cancer progression through HIF1-TRIB3 signaling[J]. Cancer Sci, 2021, 112(10): 4198-4207. DOI: 10.1111/cas.15101. |
[18] |
Li X, Liu R, Su X, et al. Harnessing tumor-associated macrophages as aids for cancer immunotherapy[J]. Mol Cancer, 2019, 18(1): 177. DOI: 10.1186/s12943-019-1102-3.
pmid: 31805946 |
[19] |
Cassetta L, Pollard JW. Targeting macrophages: therapeutic approaches in cancer[J]. Nat Rev Drug Discov, 2018, 17(12): 887-904. DOI: 10.1038/nrd.2018.169.
pmid: 30361552 |
[20] |
Chun E, Lavoie S, Michaud M, et al. CCL2 promotes colorectal carcinogenesis by enhancing polymorphonuclear myeloid-derived suppressor cell population and function[J]. Cell Rep, 2015, 12(2): 244-257. DOI: 10.1016/j.celrep.2015.06.024.
pmid: 26146082 |
[21] |
Tu MM, Abdel-Hafiz HA, Jones RT, et al. Inhibition of the CCL2 receptor, CCR2, enhances tumor response to immune checkpoint therapy[J]. Commun Biol, 2020, 3(1): 720. DOI: 10.1038/s42003-020-01441-y.
pmid: 33247183 |
[22] |
Zhu Y, Knolhoff BL, Meyer MA, et al. CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models[J]. Cancer Res, 2014, 74(18): 5057-5069. DOI: 10.1158/0008-5472.CAN-13-3723.
pmid: 25082815 |
[23] | Cassier PA, Garin G, Eberst L, et al. MEDIPLEX: a phase 1 study of durvalumab (D) combined with pexidartinib (P) in patients (pts) with advanced pancreatic ductal adenocarcinoma (PDAC) and colorectal cancer (CRC)[J]. J Clin Oncol, 2019, 37(15 suppl): 2579. DOI: 10.1200/JCO.2019.37.15_suppl.2579. |
[24] | Haag GM, Springfeld C, Grün B, et al. Pembrolizumab and maraviroc in refractory mismatch repair proficient/microsatellite-stable metastatic colorectal cancer-the PICCASSO phase I trial[J]. Eur J Cancer, 2022, 167: 112-122. DOI: 10.1016/j.ejca.2022.03.017. |
[25] | De Henau O, Rausch M, Winkler D, et al. Overcoming resistance to checkpoint blockade therapy by targeting PI3Kγ in myeloid cells[J]. Nature, 2016, 539(7629): 443-447. DOI: 10.1038/nature20554. |
[26] |
Heller S, Glaeske S, Gluske K, et al. Pan-PI3K inhibition with copanlisib overcomes Treg- and M2-TAM-mediated immune suppression and promotes anti-tumor immune responses[J]. Clin Exp Med, 2023, 23(8): 5445-5461.
doi: 10.1007/s10238-023-01227-6 |
[27] | Tauriello DVF, Palomo-Ponce S, Stork D, et al. TGFβ drives immune evasion in genetically reconstituted colon cancer metastasis[J]. Nature, 2018, 554(7693):538-543. DOI: 10.1038/nature 25492. |
[28] | Zha H, Wang X, Zhu Y, et al. Intracellular activation of complement C3 leads to PD-L1 antibody treatment resistance by modula-ting tumor-associated macrophages[J]. Cancer Immunol Res, 2019, 7(2): 193-207. DOI: 10.1158/2326-6066.CIR-18-0272. |
[29] | Wen ZF, Liu H, Gao R, et al. Tumor cell-released autophagosomes (TRAPs) promote immunosuppression through induction of M2-like macrophages with increased expression of PD-L1[J]. J Immunother Cancer, 2018, 6(1): 151. DOI: 10.1186/s40425-018-0452-5. |
[30] | Kou Y, Li Z, Sun Q, et al. Prognostic value and predictive biomarkers of phenotypes of tumour-associated macrophages in colorectal cancer[J]. Scand J Immunol, 2022, 95(4): e13137. DOI: 10.1111/sji.13137. |
[31] | Xu G, Jiang L, Ye C, et al. The ratio of CD86+/CD163+ macrophages predicts postoperative recurrence in stage Ⅱ-Ⅲ colorectal cancer[J]. Front Immunol, 2021, 12:724429. DOI: 10.3389/fimmu.2021.724429. |
[32] |
Zhao Y, Ge X, Xu X, et al. Prognostic value and clinicopathological roles of phenotypes of tumour-associated macrophages in colorectal cancer[J]. J Cancer Res Clin Oncol, 2019, 145(12): 3005-3019. DOI: 10.1007/s00432-019-03041-8.
pmid: 31650222 |
[33] |
Cavnar MJ, Turcotte S, Katz SC, et al. Tumor-associated macrophage infiltration in colorectal cancer liver metastases is associated with better outcome[J]. Ann Surg Oncol, 2017, 24(7): 1835-1842. DOI: 10.1245/s10434-017-5812-8.
pmid: 28213791 |
[34] | Gordon SR, Maute RL, Dulken BW, et al. PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity[J]. Nature, 2017, 545(7655): 495-499. DOI: 10.1038/nature22396. |
[35] |
Bortolomeazzi M, Keddar MR, Montorsi L, et al. Immunogenomics of colorectal cancer response to checkpoint blockade: analysis of the KEYNOTE 177 trial and validation cohorts[J]. Gastroenterology, 2021, 161(4): 1179-1193. DOI: 10.1053/j.gastro.2021.06.064.
pmid: 34197832 |
[1] | Zhang Rui, Chu Yanliu. Research progress of colorectal cancer risk assessment models based on FIT and gut microbiota [J]. Journal of International Oncology, 2024, 51(6): 370-375. |
[2] | Gao Fan, Wang Ping, Du Chao, Chu Yanliu. Research progress on intestinal flora and non-surgical treatment of the colorectal cancer [J]. Journal of International Oncology, 2024, 51(6): 376-381. |
[3] | Wang Junyi, Hong Kaibin, Ji Rongjia, Chen Dachao. Effect of cancer nodules on liver metastases after radical resection of colorectal cancer [J]. Journal of International Oncology, 2024, 51(5): 280-285. |
[4] | Fu Yi, Ma Chenying, Zhang Lu, Zhou Juying. Research progress of habitat analysis in radiomics of malignant tumors [J]. Journal of International Oncology, 2024, 51(5): 292-297. |
[5] | Sa Qiang, Xu Hangcheng, Wang Jiayu. Advances in immunotherapy for breast cancer [J]. Journal of International Oncology, 2024, 51(4): 227-234. |
[6] | Yang Zhi, Lu Yiqiao, Gu Huayan, Ding Jialing, Guo Guilong. Research progress of tumor microenvironment mediated drug resistance in targeted therapy of breast cancer [J]. Journal of International Oncology, 2024, 51(4): 235-238. |
[7] | Qian Xiaotao, Shi Ziyi, Hu Ge. A real-world clinical study of immunocheckpoint inhibitor maintenance therapy after radical radiotherapy and chemotherapy in stage Ⅲ-ⅣA esophageal squamous cell carcinoma [J]. Journal of International Oncology, 2024, 51(3): 151-156. |
[8] | Xie Shuping, Sun Yahong, Wang Chao. Prediction of efficacy of early-stage tumor markers combined with NLR and PLR for immunotherapy in gastric cancer [J]. Journal of International Oncology, 2024, 51(3): 157-165. |
[9] | Sun Guobao, Yang Qian, Zhuang Qingchun, Gao Binbin, Sun Xiaogang, Song Wei, Sha Dan. Research progress on the histopathological growth patterns of colorectal liver metastasis [J]. Journal of International Oncology, 2024, 51(2): 114-118. |
[10] | Liu Xiaodi, Su Jianfei, Zhang Jingxian, Wei Xueqin, Jia Yingjie. Research progress of myeloid-derived suppressor cells in tumor angiogenesis [J]. Journal of International Oncology, 2024, 51(1): 50-54. |
[11] | Gu Huayan, Zhu Teng, Guo Guilong. Breast microbiota and breast cancer: present and future [J]. Journal of International Oncology, 2024, 51(1): 55-58. |
[12] | Chen Xinyi, Weng Yiming, Wei Jiayan, Wang Jinsong, Peng Min. Advances in immune checkpoint inhibitors in the treatment of recurrent or metastatic head and neck squamous cell carcinoma [J]. Journal of International Oncology, 2023, 50(9): 553-557. |
[13] | Deng Juanjun, Zhao Dayong, Li Miao. Adverse reactions and risk factors of immune checkpoint inhibitors in the treatment of non-small cell lung cancer [J]. Journal of International Oncology, 2023, 50(9): 564-568. |
[14] | Liu Debao, Sun Ziwen, Lu Shoutang, Xu Haidong. Expression and clinical significance of ASB6 in colorectal cancer tissues [J]. Journal of International Oncology, 2023, 50(8): 470-474. |
[15] | Zhang Lu, Jiang Hua, Lin Zhou, Ma Chenying, Xu Xiaoting, Wang Lili, Zhou Juying. Analysis of curative effect and prognosis of immune checkpoint inhibitor in the treatment of recurrent and metastatic cervical cancer [J]. Journal of International Oncology, 2023, 50(8): 475-483. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||