Journal of International Oncology ›› 2022, Vol. 49 ›› Issue (8): 449-452.doi: 10.3760/cma.j.cn371439-20220303-00087
• All for People's Health—Our Pursuit in the Past Decade • Next Articles
Received:
2022-03-03
Revised:
2022-03-20
Online:
2022-08-08
Published:
2022-09-21
Contact:
Liu Jiacheng
E-mail:jiachengliu@seu.edu
Wu Jiayu, Liu Jiacheng. Research progress of radiomics toward lung adenocarcinoma manifesting as solitary ground glass nodule[J]. Journal of International Oncology, 2022, 49(8): 449-452.
[1] |
Succony L, Rassl DM, Barker AP, et al. Adenocarcinoma spectrum lesions of the lung: detection, pathology and treatment strategies[J]. Cancer Treat Rev, 2021, 99: 102237. DOI: 10.1016/j.ctrv.2021.102237.
doi: 10.1016/j.ctrv.2021.102237 |
[2] |
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
doi: 10.3322/caac.21660 |
[3] |
Xiong Z, Jiang Y, Che S, et al. Use of CT radiomics to differentiate minimally invasive adenocarcinomas and invasive adenocarcinomas presenting as pure ground-glass nodules larger than 10 mm[J]. Eur J Radiol, 2021, 141: 109772. DOI: 10.1016/j.ejrad.2021.109772.
doi: 10.1016/j.ejrad.2021.109772 |
[4] |
Shao X, Niu R, Shao X, et al. Value of 18F-FDG PET/CT-based radiomics model to distinguish the growth patterns of early invasive lung adenocarcinoma manifesting as ground-glass opacity nodules[J]. EJNMMI Res, 2020, 10(1): 80. DOI: 10.1186/s13550-020-00668-4.
doi: 10.1186/s13550-020-00668-4 |
[5] |
Gao C, Yan J, Luo Y, et al. The growth trend predictions in pulmonary ground glass nodules based on radiomic CT features[J]. Front Oncol, 2020, 10: 580809. DOI: 10.3389/fonc.2020.580809.
doi: 10.3389/fonc.2020.580809 |
[6] |
Niu R, Gao J, Shao X, et al. Maximum standardized uptake value of 18F-deoxyglucose PET imaging increases the effectiveness of CT radiomics in differentiating benign and malignant pulmonary ground-glass nodules[J]. Front Oncol, 2021, 11: 727094. DOI: 10.3389/fonc.2021.727094.
doi: 10.3389/fonc.2021.727094 |
[7] |
Heidinger BH, Anderson KR, Nemec U, et al. Lung adenocarcinoma manifesting as pure ground-glass nodules: correlating CT size, volume, density, and roundness with histopathologic invasion and size[J]. J Thorac Oncol, 2017, 12(8): 1288-1298. DOI: 10.1016/j.jtho.2017.05.017.
doi: S1556-0864(17)30425-2 pmid: 28576745 |
[8] |
Azour L, Ko JP, Naidich DP, et al. Shades of gray: subsolid nodule considerations and management[J]. Chest, 2021, 159(5): 2072-2089. DOI: 10.1016/j.chest.2020.09.252.
doi: 10.1016/j.chest.2020.09.252 |
[9] |
Wang HJ, Lin MW, Chen YC, et al. A radiomics model can distinguish solitary pulmonary capillary haemangioma from lung adenocarcinoma[J]. Interact Cardiovasc Thorac Surg, 2022, 34(3): 369-377. DOI: 10.1093/icvts/ivab271.
doi: 10.1093/icvts/ivab271 |
[10] |
Sun Y, Li C, Jin L, et al. Radiomics for lung adenocarcinoma manifesting as pure ground-glass nodules: invasive prediction[J]. Eur Radiol, 2020, 30(7): 3650-3659. DOI: 10.1007/s00330-020-06776-y.
doi: 10.1007/s00330-020-06776-y |
[11] |
Wu L, Gao C, Ye J, et al. The value of various peritumoral radiomic features in differentiating the invasiveness of adenocarci-noma manifesting as ground-glass nodules[J]. Eur Radiol, 2021, 31(12): 9030-9037. DOI: 10.1007/s00330-021-07948-0.
doi: 10.1007/s00330-021-07948-0 |
[12] |
Meng F, Guo Y, Li M, et al. Radiomics nomogram: a noninvasive tool for preoperative evaluation of the invasiveness of pulmonary adenocarcinomas manifesting as ground-glass nodules[J]. Transl Oncol, 2021, 14(1): 100936. DOI: 10.1016/j.tranon.2020.100936.
doi: 10.1016/j.tranon.2020.100936 |
[13] |
Wu G, Woodruff HC, Shen J, et al. Diagnosis of invasive lung adenocarcinoma based on chest CT radiomic features of part-solid pulmonary nodules: a multicenter study[J]. Radiology, 2020, 297(2): 451-458. DOI: 10.1148/radiol.2020192431.
doi: 10.1148/radiol.2020192431 |
[14] |
Cai J, Liu H, Yuan H, et al. A radiomics study to predict invasive pulmonary adenocarcinoma appearing as pure ground-glass nodules[J]. Clin Radiol, 2021, 76(2): 143-151. DOI: 10.1016/j.crad.2020.10.005.
doi: 10.1016/j.crad.2020.10.005 pmid: 33187676 |
[15] |
Yang X, Dong X, Wang J, et al. Computed tomography-based radiomics signature: a potential indicator of epidermal growth factor receptor mutation in pulmonary adenocarcinoma appearing as a subsolid nodule[J]. Oncologist, 2019, 24(11): e1156-e1164. DOI: 10.1634/theoncologist.2018-0706.
doi: 10.1634/theoncologist.2018-0706 |
[16] |
Shi L, Shi W, Peng X, et al. Development and validation a nomogram incorporating CT radiomics signatures and radiological features for differentiating invasive adenocarcinoma from adenocarcinoma in situ and minimally invasive adenocarcinoma presenting as ground-glass nodules measuring 5-10mm in diameter[J]. Front Oncol, 2021, 11: 618677. DOI: 10.3389/fonc.2021.618677.
doi: 10.3389/fonc.2021.618677 |
[17] |
Ma Y, Ma W, Xu X, et al. How does the delta-radiomics better differentiate pre-invasive GGNs from invasive GGNs?[J]. Front Oncol, 2020, 10: 1017. DOI: 10.3389/fonc.2020.01017.
doi: 10.3389/fonc.2020.01017 |
[18] |
Song L, Xing T, Zhu Z, et al. Hybrid clinical-radiomics model for precisely predicting the invasiveness of lung adenocarcinoma manifesting as pure ground-glass nodule[J]. Acad Radiol, 2021, 28(9): e267-e277. DOI: 10.1016/j.acra.2020.05.004.
doi: 10.1016/j.acra.2020.05.004 |
[19] |
Wang B, Tang Y, Chen Y, et al. Joint use of the radiomics method and frozen sections should be considered in the prediction of the final classification of peripheral lung adenocarcinoma manifesting as ground-glass nodules[J]. Lung Cancer, 2020, 139: 103-110. DOI: 10.1016/j.lungcan.2019.10.031.
doi: S0169-5002(19)30712-3 pmid: 31760351 |
[20] |
Yan J, Xue X, Gao C, et al. Predicting the Ki-67 proliferation index in pulmonary adenocarcinoma patients presenting with subsolid nodules: construction of a nomogram based on CT images[J]. Quant Imaging Med Surg, 2022, 12(1): 642-652. DOI: 10.21037/qims-20-1385.
doi: 10.21037/qims-20-1385 |
[21] |
Li Y, Liu J, Yang X, et al. Prediction of invasive adenocarcinomas manifesting as pure ground-glass nodules based on radiomic signature of low-dose CT in lung cancer screening[J]. Br J Radiol, 2022, 95(1133): 20211048. DOI: 10.1259/bjr.20211048.
doi: 10.1259/bjr.20211048 |
[22] |
Jiang Y, Che S, Ma S, et al. Radiomic signature based on CT imaging to distinguish invasive adenocarcinoma from minimally invasive adenocarcinoma in pure ground-glass nodules with pleural contact[J]. Cancer Imaging, 2021, 21(1): 1. DOI: 10.1186/s40644-020-00376-1.
doi: 10.1186/s40644-020-00376-1 |
[23] |
Xu F, Zhu W, Shen Y, et al. Radiomic-based quantitative CT analysis of pure ground-glass nodules to predict the invasiveness of lung adenocarcinoma[J]. Front Oncol, 2020, 10: 872. DOI: 10.3389/fonc.2020.00872.
doi: 10.3389/fonc.2020.00872 |
[24] |
Chen W, Li M, Mao D, et al. Radiomics signature on CECT as a predictive factor for invasiveness of lung adenocarcinoma manifes-ting as subcentimeter ground glass nodules[J]. Sci Rep, 2021, 11(1): 3633. DOI: 10.1038/s41598-021-83167-3.
doi: 10.1038/s41598-021-83167-3 |
[25] |
Cho HH, Lee G, Lee HY, et al. Marginal radiomics features as imaging biomarkers for pathological invasion in lung adenocarcinoma[J]. Eur Radiol, 2020, 30(5): 2984-2994. DOI: 10.1007/s00330-019-06581-2.
doi: 10.1007/s00330-019-06581-2 |
[26] |
Gevaert O, Echegaray S, Khuong A, et al. Predictive radiogeno-mics modeling of EGFR mutation status in lung cancer[J]. Sci Rep, 2017, 7: 41674. DOI: 10.1038/srep41674.
doi: 10.1038/srep41674 |
[27] |
杨蕾, 张传玉, 张在先, 等. 非小细胞肺癌影像基因组学[J]. 国际肿瘤学杂志, 2020, 47(9): 555-559. DOI: 10.3760/cma.j.cn371439-20200423-00077.
doi: 10.3760/cma.j.cn371439-20200423-00077 |
[28] |
Jansen RW, van Amstel P, Martens RM, et al. Non-invasive tumor genotyping using radiogenomic biomarkers, a systematic review and oncology-wide pathway analysis[J]. Oncotarget, 2018, 9(28): 20134-20155. DOI: 10.18632/oncotarget.24893.
doi: 10.18632/oncotarget.24893 pmid: 29732009 |
[1] | Fu Yi, Ma Chenying, Zhang Lu, Zhou Juying. Research progress of habitat analysis in radiomics of malignant tumors [J]. Journal of International Oncology, 2024, 51(5): 292-297. |
[2] | Yang Zhi, Lu Yiqiao, Gu Huayan, Ding Jialing, Guo Guilong. Research progress of tumor microenvironment mediated drug resistance in targeted therapy of breast cancer [J]. Journal of International Oncology, 2024, 51(4): 235-238. |
[3] | Liu Xiaodi, Su Jianfei, Zhang Jingxian, Wei Xueqin, Jia Yingjie. Research progress of myeloid-derived suppressor cells in tumor angiogenesis [J]. Journal of International Oncology, 2024, 51(1): 50-54. |
[4] | Gu Huayan, Zhu Teng, Guo Guilong. Breast microbiota and breast cancer: present and future [J]. Journal of International Oncology, 2024, 51(1): 55-58. |
[5] | Xu Meng, Jiang Wei, Zhu Haitao, Cao Xiongfeng. Research progress of cancer-associated fibroblasts in tumor radiotherapy resistance [J]. Journal of International Oncology, 2023, 50(4): 227-230. |
[6] | Ding Hao, Ying Jintao, Fu Maoyong. Research progress of CAR-T in the treatment of esophageal squamous cell carcinoma [J]. Journal of International Oncology, 2023, 50(4): 231-235. |
[7] | Cao Mengqing, Xu Zhiyong, Shi Yuting, Wang Kai. Role of tertiary lymphoid structures in tumor immune microenvironment regulation and anti-tumor therapy [J]. Journal of International Oncology, 2023, 50(3): 169-173. |
[8] | Xu Liangfu, Li Yuanfei. Research progress on tumor microenvironment and immune combination therapy of MSS colorectal cancer [J]. Journal of International Oncology, 2023, 50(3): 186-190. |
[9] | Cao Xiaohui, Yu Hong, Li Wanhu. Application of CT-based radiomics analysis in predicting and identifying of treatment-associated pneumonitis [J]. Journal of International Oncology, 2023, 50(2): 107-111. |
[10] | Zhu Yi, Chen Jian. Mechanism of hydrogen sulfide in tumorigenesis and development and its donor-mediated anti-tumor effects [J]. Journal of International Oncology, 2023, 50(12): 729-733. |
[11] | Xie Lulu, Ding Jianghua. Progress of immunotherapy-based strategy in triple-negative breast cancer [J]. Journal of International Oncology, 2023, 50(11): 672-676. |
[12] | Tao Hong, Yin Hong, Luo Hong, Tao Jiayu. Potential strategies for targeting tumor-associated macrophages to enhance the efficacy of immune checkpoint inhibitors for colorectal cancer [J]. Journal of International Oncology, 2023, 50(11): 683-687. |
[13] | Ma Xueyan, Lu Lili, Sun Pengfei. Advances in the immune microenvironment in cervical cancer [J]. Journal of International Oncology, 2023, 50(1): 47-50. |
[14] | Zhang Zishu, Wu Xinlin. Mechanism of action of lactic acid in tumor microenvironment and related treatment [J]. Journal of International Oncology, 2022, 49(6): 349-352. |
[15] | Wu Jiayi, Chen Keyu, Shao Xiying, Wang Xiaojia. Research progress on the mechanism of CDK4/6 inhibitors promoting antitumor immunity by regulating the immune microenvironment of triple negative breast cancer [J]. Journal of International Oncology, 2022, 49(6): 362-365. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||