Journal of International Oncology ›› 2023, Vol. 50 ›› Issue (2): 107-111.doi: 10.3760/cma.j.cn371439-20220726-00022
• Reviews • Previous Articles Next Articles
Cao Xiaohui1, Yu Hong2, Li Wanhu3()
Received:
2022-07-26
Revised:
2022-09-20
Online:
2023-02-08
Published:
2023-03-22
Contact:
Li Wanhu,Email:Supported by:
Cao Xiaohui, Yu Hong, Li Wanhu. Application of CT-based radiomics analysis in predicting and identifying of treatment-associated pneumonitis[J]. Journal of International Oncology, 2023, 50(2): 107-111.
[1] |
Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: extrac-ting more information from medical images using advanced feature analysis[J]. Eur J Cancer, 2012, 48(4): 441-446. DOI: 10.1016/j.ejca.2011.11.036.
doi: 10.1016/j.ejca.2011.11.036 |
[2] |
Bi WL, Hosny A, Schabath MB, et al. Artificial intelligence in cancer imaging: clinical challenges and applications[J]. CA Cancer J Clin, 2019, 69(2): 127-157. DOI: 10.3322/caac.21552.
doi: 10.3322/caac.21552 |
[3] |
Arifin AJ, Palma DA. The changing landscape of pneumonitis in non-small cell lung cancer[J]. Lung Cancer, 2022, 171: 1-2. DOI: 10.1016/j.lungcan.2022.07.008.
doi: 10.1016/j.lungcan.2022.07.008 pmid: 35849898 |
[4] |
符伶俐, 李萍, 张芮, 等. 胸部肿瘤患者辐射性肺炎的发生和预测因素[J]. 国际肿瘤学杂志, 2020, 47(2): 107-111. DOI: 10.3760/cma.j.issn.1673-422X.2020.02.009.
doi: 10.3760/cma.j.issn.1673-422X.2020.02.009 |
[5] |
Katsuta Y, Kadoya N, Sugai Y, et al. Feasibility of differential dose-volume histogram features in multivariate prediction model for radiation pneumonitis occurrence[J]. Diagnostics (Basel), 2022, 12(6): 1354. DOI: 10.3390/diagnostics12061354.
doi: 10.3390/diagnostics12061354 |
[6] |
路玉昆, 巩贯忠, 陈进琥, 等. CT图像影像组学特征参数变化与放射性肺炎的相关性研究[J]. 中华放射肿瘤学杂志, 2018, 27(7): 643-648. DOI: 10.3760/cma.j.issn.1004-4221.2018.07.004.
doi: 10.3760/cma.j.issn.1004-4221.2018.07.004 |
[7] |
Kawahara D, Imano N, Nishioka R, et al. Prediction of radiation pneumonitis after definitive radiotherapy for locally advanced non-small cell lung cancer using multi-region radiomics analysis[J]. Sci Rep, 2021, 11(1): 16232. DOI: 10.1038/s41598-021-95643-x.
doi: 10.1038/s41598-021-95643-x pmid: 34376721 |
[8] |
张臻, 赵路军, 王伟, 等. 基于放射组学预测放射性肺炎的初步研究[J]. 中华放射肿瘤学杂志, 2020, 29(6): 427-431. DOI: 10.3760/cma.j.cn113030-20190225-00063.
doi: 10.3760/cma.j.cn113030-20190225-00063 |
[9] |
Krafft SP, Rao A, Stingo F, et al. The utility of quantitative CT radiomics features for improved prediction of radiation pneumonitis[J]. Med Phys, 2018, 45(11): 5317-5324. DOI: 10.1002/mp.13150.
doi: 10.1002/mp.13150 pmid: 30133809 |
[10] |
孔燕, 吴佳, 魏贤顶, 等. 肺癌放疗患者症状性放射性肺炎预测的CT影像组学研究[J]. 中华放射医学与防护杂志, 2022, 42(2): 115-120. DOI: 10.3760/cma.j.cn112271-20210730-00301.
doi: 10.3760/cma.j.cn112271-20210730-00301 |
[11] |
Jiang W, Song Y, Sun Z, et al. Dosimetric factors and radiomics features within different regions of interest in planning CT images for improving the prediction of radiation pneumonitis[J]. Int J Radiat Oncol Biol Phys, 2021, 110(4): 1161-1170. DOI: 10.1016/j.ijrobp.2021.01.049.
doi: 10.1016/j.ijrobp.2021.01.049 |
[12] |
Puttanawarut C, Sirirutbunkajorn N, Tawong N, et al. Radiomic and dosiomic features for the prediction of radiation pneumonitis across esophageal cancer and lung cancer[J]. Front Oncol, 2022, 12: 768152. DOI: 10.3389/fonc.2022.768152.
doi: 10.3389/fonc.2022.768152 |
[13] |
Wang L, Gao Z, Li C, et al. Computed tomography-based delta-radiomics analysis for discriminating radiation pneumonitis in patients with esophageal cancer after radiation therapy[J]. Int J Radiat Oncol Biol Phys, 2021, 111(2): 443-455. DOI: 10.1016/j.ijrobp.2021.04.047.
doi: 10.1016/j.ijrobp.2021.04.047 |
[14] |
Adachi T, Nakamura M, Shintani T, et al. Multi-institutional dose-segmented dosiomic analysis for predicting radiation pneumonitis after lung stereotactic body radiation therapy[J]. Med Phys, 2021, 48(4): 1781-1791. DOI: 10.1002/mp.14769.
doi: 10.1002/mp.14769 pmid: 33576510 |
[15] |
Hirose TA, Arimura H, Ninomiya K, et al. Radiomic prediction of radiation pneumonitis on pretreatment planning computed tomography images prior to lung cancer stereotactic body radiation therapy[J]. Sci Rep, 2020, 10(1): 20424. DOI: 10.1038/s41598-020-77552-7.
doi: 10.1038/s41598-020-77552-7 |
[16] |
van Timmeren JE, Leijenaar RTH, van Elmpt W, et al. Survival prediction of non-small cell lung cancer patients using radiomics analyses of cone-beam CT images[J]. Radiother Oncol, 2017, 123(3): 363-369. DOI: 10.1016/j.radonc.2017.04.016.
doi: S0167-8140(17)30157-3 pmid: 28506693 |
[17] |
杜峰, 王强, 王玮, 等. CBCT影像组学联合构建Nomogram模型预测食管癌放疗患者放射性肺炎[J]. 中华放射肿瘤学杂志, 2021, 30(6): 549-555. DOI: 10.3760/cma.j.cn113030-20200703-00339.
doi: 10.3760/cma.j.cn113030-20200703-00339 |
[18] |
Qin Q, Shi A, Zhang R, et al. Cone-beam CT radiomics features might improve the prediction of lung toxicity after SBRT in stage Ⅰ NSCLC patients[J]. Thorac Cancer, 2020, 11(4): 964-972. DOI: 10.1111/1759-7714.13349.
doi: 10.1111/1759-7714.13349 |
[19] |
Antonia SJ, Villegas A, Daniel D, et al. Durvalumab after chemoradiotherapy in stage Ⅲ non-small-cell lung cancer[J]. N Engl J Med, 2017, 377(20): 1919-1929. DOI: 10.1056/NEJMoa1709937.
doi: 10.1056/NEJMoa1709937 |
[20] |
山东省医学会肺癌多学科联合委员会. 山东省医学会肺癌多学科规范化诊疗指南[J]. 国际肿瘤学杂志, 2021, 48(5): 257-274. DOI: 10.3760/cma.j.cn371439-20210222-00052.
doi: 10.3760/cma.j.cn371439-20210222-00052 |
[21] |
Naidoo J, Nishino M, Patel SP, et al. Immune-related pneumonitis after chemoradiotherapy and subsequent immune checkpoint bloc-kade in unresectable stage Ⅲ non-small-cell lung cancer[J]. Clin Lung Cancer, 2020, 21(5): e435-e444. DOI: 10.1016/j.cllc.2020.02.025.
doi: 10.1016/j.cllc.2020.02.025 |
[22] |
王慧, 夏茸, 魏清雯, 等. 非小细胞肺癌免疫检查点抑制剂相关性肺炎的危险因素及预测生物标志物[J]. 国际肿瘤学杂志, 2021, 48(5): 296-301. DOI: 10.3760/cma.j.cn371439-20210115-00057.
doi: 10.3760/cma.j.cn371439-20210115-00057 |
[23] |
Voong KR, Hazell SZ, Fu W, et al. Relationship between prior radiotherapy and checkpoint-inhibitor pneumonitis in patients with advanced non-small-cell lung cancer[J]. Clin Lung Cancer, 2019, 20(4): e470-e479. DOI: 10.1016/j.cllc.2019.02.018.
doi: 10.1016/j.cllc.2019.02.018 |
[24] |
Lu X, Wang J, Zhang T, et al. Comprehensive pneumonitis profile of thoracic radiotherapy followed by immune checkpoint inhibitor and risk factors for radiation recall pneumonitis in lung cancer[J]. Front Immunol, 2022, 13: 918787. DOI: 10.3389/fimmu.2022.918787.
doi: 10.3389/fimmu.2022.918787 |
[25] |
Colen RR, Fujii T, Bilen MA, et al. Radiomics to predict immuno-therapy-induced pneumonitis: proof of concept[J]. Invest New Drugs, 2018, 36(4): 601-607. DOI: 10.1007/s10637-017-0524-2.
doi: 10.1007/s10637-017-0524-2 |
[26] |
Cheng J, Pan Y, Huang W, et al. Differentiation between immune checkpoint inhibitor-related and radiation pneumonitis in lung cancer by CT radiomics and machine learning[J]. Med Phys, 2022, 49(3): 1547-1558. DOI: 10.1002/mp.15451.
doi: 10.1002/mp.15451 pmid: 35026041 |
[27] |
Wass R, Hochmair M, Kaiser B, et al. Durvalumab after sequential high dose chemoradiotherapy versus standard of care (SoC) for stage Ⅲ NSCLC: a bi-centric trospective comparison focusing on pulmonary toxicity[J]. Cancers (Basel), 2022, 14(13): 3226. DOI: 10.3390/cancers14133226.
doi: 10.3390/cancers14133226 |
[28] |
Qiu Q, Xing L, Wang Y, et al. Development and validation of a radiomics nomogram using computed tomography for differentiating immune checkpoint inhibitor-related pneumonitis from radiation pneumonitis for patients with non-small cell lung cancer[J]. Front Immunol, 2022, 13: 870842. DOI: 10.3389/fimmu.2022.870842.
doi: 10.3389/fimmu.2022.870842 |
[29] |
Chen X, Sheikh K, Nakajima E, et al. Radiation versus immune checkpoint inhibitor associated pneumonitis: distinct radiologic morphologies[J]. Oncologist, 2021, 26(10): e1822-e1832. DOI: 10.1002/onco.13900.
doi: 10.1002/onco.13900 pmid: 34251728 |
[30] |
Wilkinson MD, Dumontier M, Aalbersberg IJ, et al. The FAIR guiding principles for scientific data management and stewardship[J]. Sci Data, 2016, 3: 160018. DOI: 10.1038/sdata.2016.18.
doi: 10.1038/sdata.2016.18 |
[31] |
Vesteghem C, Brøndum RF, Sønderkær M, et al. Implementing the FAIR data principles in precision oncology: review of supporting initiatives[J]. Brief Bioinform, 2020, 21(3): 936-945. DOI: 10.1093/bib/bbz044.
doi: 10.1093/bib/bbz044 pmid: 31263868 |
[32] |
Ibrahim A, Primakov S, Beuque M, et al. Radiomics for precision medicine: current challenges, future prospects, and the proposal of a new framework[J]. Methods, 2021, 188: 20-29. DOI: 10.1016/j.ymeth.2020.05.022.
doi: 10.1016/j.ymeth.2020.05.022 pmid: 32504782 |
[33] |
Wang F, Kaushal R, Khullar D. Should health care demand interpretable artificial intelligence or accept "black box" medicine?[J]. Ann Intern Med, 2020, 172(1): 59-60. DOI: 10.7326/M19-2548.
doi: 10.7326/M19-2548 pmid: 31842204 |
[34] |
Pinker K, Chin J, Melsaether AN, et al. Precision medicine and radiogenomics in breast cancer: new approaches toward diagnosis and treatment[J]. Radiology, 2018, 287(3): 732-747. DOI: 10.1148/radiol.2018172171.
doi: 10.1148/radiol.2018172171 pmid: 29782246 |
[1] | Fu Yi, Ma Chenying, Zhang Lu, Zhou Juying. Research progress of habitat analysis in radiomics of malignant tumors [J]. Journal of International Oncology, 2024, 51(5): 292-297. |
[2] | Wu Jiayu, Liu Jiacheng. Research progress of radiomics toward lung adenocarcinoma manifesting as solitary ground glass nodule [J]. Journal of International Oncology, 2022, 49(8): 449-452. |
[3] | Huang Huayu, Song Qibin, Gong Hongyun, Song Jia. Analysis on the incidence and risk factors of pneumonia in patients with lung cancer receiving thoracic radiotherapy and immunotherapy [J]. Journal of International Oncology, 2022, 49(12): 718-723. |
[4] | Zhang Jie, Wei Meizhuo, Zhao ling, Yi Shanyong. Research progress of radiation recall pneumonitis caused by immune checkpoint inhibitors [J]. Journal of International Oncology, 2022, 49(10): 577-580. |
[5] | Hu Ge, Su Jie, Li Qiangwei, Xu Peng, Xu Xiuli, Qian Xiaotao. Value of CD4/CD8 ratio and total B lymphocytes before radiotherapy in predicting radiation pneumonitis in patients with esophageal cancer and lung cancer [J]. Journal of International Oncology, 2021, 48(9): 523-526. |
[6] | Yang Lei, Zhang Chuanyu, Zhang Zaixian, Liu Huan. Radiogenomics in non-small cell lung cancer [J]. Journal of International Oncology, 2020, 47(9): 555-559. |
[7] | Fu Lingli, Li Ping, Zhang Rui, Han Jianglong, Fu Zhenming. Occurrence and perdictive factors of radiation pneumonitis in patients with thoracic tumor [J]. Journal of International Oncology, 2020, 47(2): 107-111. |
[8] | Lu Haidi, Shen Fu, Lu Jianping, Hao Liqiang. Research on prediction of pathological complete response after neoadjuvant therapy for rectal cancer based on MRI high-resolution T2WI images [J]. Journal of International Oncology, 2020, 47(10): 593-597. |
[9] | Guo Jianlin, Zhang Chuanyu, Yu Hualong, Zhang Zaixian. Progress of radiogenomics in lung cancer [J]. Journal of International Oncology, 2019, 46(9): 544-547. |
[10] | Guo Tianhui, Wang Haoming, Ren Ruimei, Xu Jinpeng, Song Hao, Xiao Wenjing, Xu Mingjin, Liu Xiguang. Progress of radiomics and radiogenomics in lung cancer [J]. Journal of International Oncology, 2018, 45(8): 566-569. |
[11] | BAO Ling-Li, WU Ai-Bing, YANG Zhi-Xiong. KL-6 in radioactive pneumonia with lung cancer [J]. Journal of International Oncology, 2013, 40(8): 593-595. |
[12] | ZHOU Jun-Jun, LU Zhao-Tong. Mesenchymal stem cells in radiationinduced lung injury treatment [J]. Journal of International Oncology, 2012, 39(8): 706-708. |
[13] | CHENG Jian, KONG Ling-Ling, LI Hong-Jun, LI Bao-Sheng. Molecular mechanism of flavonoids for preventing radiationinduced lung injury [J]. Journal of International Oncology, 2012, 39(8): 588-590. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||