Journal of International Oncology ›› 2020, Vol. 47 ›› Issue (9): 555-559.doi: 10.3760/cma.j.cn371439-20200423-00077
• Reviews • Previous Articles Next Articles
Yang Lei, Zhang Chuanyu(), Zhang Zaixian, Liu Huan
Received:
2020-04-23
Revised:
2020-07-25
Online:
2020-09-08
Published:
2020-10-27
Contact:
Zhang Chuanyu
E-mail:zhangchuanyu0926@163.com
Yang Lei, Zhang Chuanyu, Zhang Zaixian, Liu Huan. Radiogenomics in non-small cell lung cancer[J]. Journal of International Oncology, 2020, 47(9): 555-559.
[1] |
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020[J]. CA Cancer J Clin, 2020,70(1):7-30. DOI: 10.3322/caac.21590.
doi: 10.3322/caac.21590 pmid: 31912902 |
[2] |
Lambin P, Leijenaar RTH, Deist TM, et al. Radiomics: the bridge between medical imaging and personalized medicine[J]. Nat Rev Clin Oncol, 2017,14(12):749-762. DOI: 10.1038/nrclinonc.2017.141.
pmid: 28975929 |
[3] |
Zhou M, Leung A, Echegaray S, et al. Non-small cell lung cancer radiogenomics map identifies relationships between molecular and imaging phenotypes with prognostic implications[J]. Radiology, 2018,286(1):307-315. DOI: 10.1148/radiol.2017161845.
doi: 10.1148/radiol.2017161845 pmid: 28727543 |
[4] |
Liu Y, Kim J, Balagurunathan Y, et al. Radiomic features are associated with EGFR mutation status in lung adenocarcinomas[J]. Clin Lung Cancer, 2016,17(5):441-448.e6. DOI: 10.1016/j.cllc.2016.02.001.
doi: 10.1016/j.cllc.2016.02.001 pmid: 27017476 |
[5] |
Song J, Shi J, Dong D, et al. A new approach to predict progression-free survival in stage Ⅳ EGFR-mutant NSCLC patients with EGFR-TKI therapy[J]. Clin Cancer Res, 2018,24(15):3583-3592. DOI: 10.1158/1078-0432.CCR-17-2507.
doi: 10.1158/1078-0432.CCR-17-2507 pmid: 29563137 |
[6] |
Zhang L, Chen B, Liu X, et al. Quantitative biomarkers for prediction of epidermal growth factor receptor mutation in non-small cell lung cancer[J]. Transl Oncol, 2018,11(1):94-101. DOI: 10.1016/j.tranon.2017.10.012.
pmid: 29216508 |
[7] |
Jia TY, Xiong JF, Li XY, et al. Identifying EGFR mutations in lung adenocarcinoma by noninvasive imaging using radiomics features and random forest modeling[J]. Eur Radiol, 2019,29(9):4742-4750. DOI: 10.1007/s00330-019-06024-y.
doi: 10.1007/s00330-019-06024-y pmid: 30778717 |
[8] |
Yang X, Dong X, Wang J, et al. Computed tomography-based radiomics signature: a potential indicator of epidermal growth factor receptor mutation in pulmonary adenocarcinoma appearing as a subsolid nodule[J]. Oncologist, 2019,24(11):e1156-e1164. DOI: 10.1634/theoncologist.2018-0706.
doi: 10.1634/theoncologist.2018-0706 pmid: 30936378 |
[9] |
Tu W, Sun G, Fan L, et al. Radiomics signature: a potential and incremental predictor for EGFR mutation status in NSCLC patients, comparison with CT morphology[J]. Lung Cancer, 2019,132:28-35. DOI: 10.1016/j.lungcan.2019.03.025.
doi: 10.1016/j.lungcan.2019.03.025 |
[10] |
Wang S, Shi J, Ye Z, et al. Predicting EGFR mutation status in lung adenocarcinoma on computed tomography image using deep learning[J]. Eur Respir J, 2019,53(3):1800986. DOI: 10.1183/13993003.00986-2018.
doi: 10.1183/13993003.00986-2018 pmid: 30635290 |
[11] |
Li S, Ding C, Zhang H, et al. Radiomics for the prediction of EGFR mutation subtypes in non-small cell lung cancer[J]. Med Phys, 2019,46(10):4545-4552. DOI: 10.1002/mp.13747.
doi: 10.1002/mp.13747 pmid: 31376283 |
[12] |
Zhao W, Wu Y, Xu Y, et al. The potential of radiomics nomogram in non-invasively prediction of epidermal growth factor receptor mutation status and subtypes in lung adenocarcinoma[J]. Front Oncol, 2020,9:1485. DOI: 10.3389/fonc.2019.01485.
doi: 10.3389/fonc.2019.01485 pmid: 31993370 |
[13] |
Wang H, Guo H, Wang Z, et al. The diagnostic value of quantitative CT analysis of ground-glass volume percentage in differentiating epidermal growth factor receptor mutation and subtypes in lung adenocarcinoma[J]. Biomed Res Int, 2019,2019:9643836. DOI: 10.1155/2019/9643836.
doi: 10.1155/2019/9643836 pmid: 30956990 |
[14] |
Suh YJ, Lee HJ, Kim YJ, et al. Computed tomography characteristics of lung adenocarcinomas with epidermal growth factor receptor mutation: a propensity score matching study[J]. Lung Cancer, 2018,123:52-59. DOI: 10.1016/j.lungcan.2018.06.030.
doi: 10.1016/j.lungcan.2018.06.030 pmid: 30089595 |
[15] |
Hong SJ, Kim TJ, Choi YW, et al. Radiogenomic correlation in lung adenocarcinoma with epidermal growth factor receptor mutations: imaging features and histological subtypes[J]. Eur Radiol, 2016,26(10):3660-3668. DOI: 10.1007/s00330-015-4196-z.
doi: 10.1007/s00330-015-4196-z pmid: 26787602 |
[16] |
Hasegawa M, Sakai F, Ishikawa R, et al. CT features of epidermal growth factor receptor-mutated adenocarcinoma of the lung: comparison with nonmutated adenocarcinoma[J]. J Thorac Oncol, 2016,11(6):819-826. DOI: 10.1016/j.jtho.2016.02.010.
doi: 10.1016/j.jtho.2016.02.010 |
[17] |
Liu Y, Kim J, Qu F, et al. CT features associated with epidermal growth factor receptor mutation status in patients with lung adenocarcinoma[J]. Radiology, 2016,280(1):271-280. DOI: 10.1148/radiol.2016151455.
doi: 10.1148/radiol.2016151455 pmid: 26937803 |
[18] |
Qin X, Gu X, Lu Y, et al. EGFR-TKI-sensitive mutations in lung carcinomas: are they related to clinical features and CT findings?[J]. Cancer Manag Res, 2018,10:4019-4027. DOI: 10.2147/CMAR.S174623.
doi: 10.2147/CMAR.S174623 pmid: 30323660 |
[19] |
Koo HJ, Kim MY, Park S, et al. Non-small cell lung cancer with resistance to EGFR-TKI therapy: CT characteristics of T790M mutation-positive cancer[J]. Radiology, 2018,289(1):227-237. DOI: 10.1148/radiol.2018180070.
doi: 10.1148/radiol.2018180070 pmid: 30015588 |
[20] |
Yoon HJ, Sohn I, Cho JH, et al. Decoding tumor phenotypes for ALK, ROS1, and RET fusions in lung adenocarcinoma using a radiomics approach[J]. Medicine (Baltimore), 2015,94(41):e1753. DOI: 10.1097/MD.0000000000001753.
doi: 10.1097/MD.0000000000001753 |
[21] | 宋兰, 朱振宸, 姜蕾, 等. CT影像组学在预测肺腺癌ALK融合基因表达中的价值初探[J]. 中华放射学杂志, 2019,53(11):963-967. DOI: 10.3760/cma.j.issn.1005-1201.2019.11.007. |
[22] |
Song L, Zhu Z, Mao L, et al. Clinical, conventional CT and radiomic feature-based machine learning models for predicting ALK rearrangement status in lung adenocarcinoma patients[J]. Front Oncol, 2020,10:369. DOI: 10.3389/fonc.2020.00369.
doi: 10.3389/fonc.2020.00369 pmid: 32266148 |
[23] |
Kim TJ, Lee CT, Jheon SH, et al. Radiologic characteristics of surgically resected non-small cell lung cancer with ALK rearrangement or EGFR mutations[J]. Ann Thorac Surg, 2016,101(2):473-480. DOI: 10.1016/j.athoracsur.2015.07.062.
doi: 10.1016/j.athoracsur.2015.07.062 pmid: 26454747 |
[24] |
Wang H, Schabath MB, Liu Y, et al. Clinical and CT characteristics of surgically resected lung adenocarcinomas harboring ALK rearrangements or EGFR mutations[J]. Eur J Radiol, 2016,85(11):1934-1940. DOI: 10.1016/j.ejrad.2016.08.023.
doi: 10.1016/j.ejrad.2016.08.023 pmid: 27776643 |
[25] |
Mori M, Hayashi H, Fukuda M, et al. Clinical and computed tomography characteristics of non-small cell lung cancer with ALK gene rearrangement: comparison with EGFR mutation and ALK/EGFR-negative lung cancer[J]. Thorac Cancer, 2019,10(4):872-879. DOI: 10.1111/1759-7714.13017.
doi: 10.1111/tca.2019.10.issue-4 |
[26] |
Rizzo S, Petrella F, Buscarino V, et al. CT radiogenomic characte-rization of EGFR, K-RAS, and ALK mutations in non-small cell lung cancer[J]. Eur Radiol, 2016,26(1):32-42. DOI: 10.1007/s00330-015-3814-0.
doi: 10.1007/s00330-015-3814-0 pmid: 25956936 |
[27] |
Miao Y, Zhu S, Li H, et al. Comparison of clinical and radiological characteristics between anaplastic lymphoma kinase rearrangement and epidermal growth factor receptor mutation in treatment naïve advanced lung adenocarcinoma[J]. J Thorac Dis, 2017,9(10):3927-3937. DOI: 10.21037/jtd.2017.08.134.
doi: 10.21037/jtd.2017.08.134 pmid: 29268403 |
[28] |
Mendoza DP, Stowell J, Muzikansky A, et al. Computed tomography imaging characteristics of non-small-cell lung cancer with anaplastic lymphoma kinase rearrangements: a systematic review and meta-analysis[J]. Clin Lung Cancer, 2019,20(5):339-349. DOI: 10.1016/j.cllc.2019.05.006.
doi: 10.1016/j.cllc.2019.05.006 |
[29] |
Seto K, Kuroda H, Yoshida T, et al. Higher frequency of occult lymph node metastasis in clinical N0 pulmonary adenocarcinoma with ALK rearrangement[J]. Cancer Manag Res, 2018,10:2117-2124. DOI: 10.2147/CMAR.S147569.
doi: 10.2147/CMAR.S147569 pmid: 30050322 |
[30] |
Weiss GJ, Ganeshan B, Miles KA, et al. Noninvasive image texture analysis differentiates K-ras mutation from pan-wildtype NSCLC and is prognostic[J]. PLoS One, 2014,9(7):e100244. DOI: 10.1371/journal.pone.0100244.
doi: 10.1371/journal.pone.0100244 pmid: 24987838 |
[31] |
Rios Velazquez E, Parmar C, Liu Y, et al. Somatic mutations drive distinct imaging phenotypes in lung cancer[J]. Cancer Res, 2017,77(14):3922-3930. DOI: 10.1158/0008-5472.CAN-17-0122.
doi: 10.1158/0008-5472.CAN-17-0122 pmid: 28566328 |
[32] |
Wang H, Schabath MB, Liu Y, et al. Association between computed tomographic features and kirsten rat sarcoma viral oncogene mutations in patients with stage Ⅰ lung adenocarcinoma and their prognostic value[J]. Clin Lung Cancer, 2016,17(4):271-278. DOI: 10.1016/j.cllc.2015.11.002.
doi: 10.1016/j.cllc.2015.11.002 pmid: 26712103 |
[33] |
Lv J, Zhang H, Ma J, et al. Comparison of CT radiogenomic and clinical characteristics between EGFR and KRAS mutations in lung adenocarcinomas[J]. Clin Radiol, 2018,73(6):590.e1-590.e8. DOI: 10.1016/j.crad.2018.01.009.
doi: 10.1016/j.crad.2018.01.009 |
[34] |
Rizzo S, Raimondi S, de Jong EEC, et al. Genomics of non-small cell lung cancer (NSCLC): association between CT-based imaging features and EGFR and K-RAS mutations in 122 patients—an external validation[J]. Eur J Radiol, 2019,110:148-155. DOI: 10.1016/j.ejrad.2018.11.032.
doi: 10.1016/j.ejrad.2018.11.032 pmid: 30599853 |
[35] |
Gevaert O, Echegaray S, Khuong A, et al. Predictive radiogenomics modeling of EGFR mutation status in lung cancer[J]. Sci Rep, 2017,7:41674. DOI: 10.1038/srep41674.
pmid: 28139704 |
[1] | Fu Yi, Ma Chenying, Zhang Lu, Zhou Juying. Research progress of habitat analysis in radiomics of malignant tumors [J]. Journal of International Oncology, 2024, 51(5): 292-297. |
[2] | Cao Xiaohui, Yu Hong, Li Wanhu. Application of CT-based radiomics analysis in predicting and identifying of treatment-associated pneumonitis [J]. Journal of International Oncology, 2023, 50(2): 107-111. |
[3] | Wu Jiayu, Liu Jiacheng. Research progress of radiomics toward lung adenocarcinoma manifesting as solitary ground glass nodule [J]. Journal of International Oncology, 2022, 49(8): 449-452. |
[4] | Jin Chenxing, Zhao Yi. Research progress of KRAS mutation in lung adenocarcinoma [J]. Journal of International Oncology, 2020, 47(3): 180-184. |
[5] | Lu Haidi, Shen Fu, Lu Jianping, Hao Liqiang. Research on prediction of pathological complete response after neoadjuvant therapy for rectal cancer based on MRI high-resolution T2WI images [J]. Journal of International Oncology, 2020, 47(10): 593-597. |
[6] | Guo Jianlin, Zhang Chuanyu, Yu Hualong, Zhang Zaixian. Progress of radiogenomics in lung cancer [J]. Journal of International Oncology, 2019, 46(9): 544-547. |
[7] | Guo Tianhui, Wang Haoming, Ren Ruimei, Xu Jinpeng, Song Hao, Xiao Wenjing, Xu Mingjin, Liu Xiguang. Progress of radiomics and radiogenomics in lung cancer [J]. Journal of International Oncology, 2018, 45(8): 566-569. |
[8] | Sun Wenyu, Yan Pengfei, Yuan Yingli, Ma Kewei. Progress of ALK gene inhibitors in the treatment of brain metastases from nonsmall cell lung cancer [J]. Journal of International Oncology, 2017, 44(6): 472-. |
[9] | LIANG Hong-Ge, XU Yan-Zhong, WEI Zhao-Jing, CHEN Min-Jiang, WANG Hua-Zhu, WANG Meng-Zhao. Evaluation of efficacy and safety of crizotinib and its prognostic factors in patients with ALKpositive advanced nonsmall cell lung cancer [J]. Journal of International Oncology, 2017, 44(5): 336-341. |
[10] | XU Qi-Ni, LI Xu-Yuan, WANG Hong-Biao. Second line treatment of nonsmall cell lung cancer [J]. Journal of International Oncology, 2015, 42(5): 385-387. |
[11] | Fang Shu, Pan Zhifeng. Advances of anaplastic lymphoma kinase in non-small cell lung cancer [J]. Journal of International Oncology, 2014, 41(8): 592-594. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||