Journal of International Oncology ›› 2018, Vol. 45 ›› Issue (8): 566-569.doi: 10.3760/cma.j.issn.1673-422X.2018.09.012
Previous Articles Next Articles
Guo Tianhui, Wang Haoming, Ren Ruimei, Xu Jinpeng, Song Hao, Xiao Wenjing, Xu Mingjin, Liu Xiguang
Online:
2018-09-08
Published:
2018-11-15
Contact:
Liu Xiguang
E-mail:xiguangliu1962@sina.com
Guo Tianhui, Wang Haoming, Ren Ruimei, Xu Jinpeng, Song Hao, Xiao Wenjing, Xu Mingjin, Liu Xiguang. Progress of radiomics and radiogenomics in lung cancer[J]. Journal of International Oncology, 2018, 45(8): 566-569.
[1] 刘再毅, 梁长虹. 促进影像组学的转化研究[J]. 中国医学影像技术, 2017, 33(12): 17651767. DOI: 10.13929/j.10033289.201711133. [2] Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data[J]. Radiology, 2016, 278(2): 563577. DOI: 10.1148/radiol.2015151169. [3] Kuo MD, Jamshidi N. Behind the numbers: decoding molecular phenotypes with radiogenomicsguiding principles and technical considerations[J]. Radiology, 2014, 270(2): 320325. DOI: 10.1148/radiol.13132195. [4] Lambin P, Leijenaar RTH, Deist TM, et al. Radiomics: the bridge between medical imaging and personalized medicine[J]. Nat Rev Clin Oncol, 2017, 14(12): 749762. DOI: 10.1038/nrclinonc.2017.141. [5] Kamiya A, Murayama S, Kamiya H, et al. Kurtosis and skewness assessments of solid lung nodule density histograms: differentiating malignant from benign nodules on CT[J]. Jpn J Radiol, 2014, 32(1): 1421. DOI: 10.1007/s116040130264y. [6] Wu W, Parmar C, Grossmann P, et al. Exploratory study to identify radiomics classifiers for lung cancer histology[J]. Front Oncol, 2016, 6: 71. DOI: 10.3389/fonc.2016.00071. [7] Zhu X, Dong D, Chen Z, et al. Radiomic signature as a diagnostic factor for histologic subtype classification of nonsmall cell lung cancer[J]. Eur Radiol, 2018, 28(7): 27722778. DOI: 10.1007/s0033001752211. [8] Hofmanninger J, Langs G. Mapping visual features to semantic profiles for retrieval in medical imaging[C]. Computer Vision and Pattern Recognition IEEE, 2015: 457465. [9] Peikert T, Duan F, Rajagopalan S, et al. Novel highresolution computed tomographybased radiomic classifier for screenidentified pulmonary nodules in the National Lung Screening Trial[J]. PLoS One, 2018, 13(5): e0196910. DOI: 10.1371/journal.pone.0196910. [10] Tu SJ, Wang CW, Pan KT, et al. Localized thinsection CT with radiomics feature extraction and machine learning to classify earlydetected pulmonary nodules from lung cancer screening[J]. Phys Med Biol, 2018, 63(6): 065005. DOI: 10.1088/13616560/aaafab. [11] Choi W, Oh JH, Riyahi S, et al. Radiomics analysis of pulmonary nodules in lowdose CT for early detection of lung cancer[J]. Med Phys, 2018, 45(4): 15371549. DOI: 10.1002/mp.12820. [12] Gevaert O, Echegaray S, Khuong A, et al. Predictive radiogenomics modeling of EGFR mutation status in lung cancer[J]. Sci Rep, 2017, 7: 41674. DOI: 10.1038/srep41674. [13] Sacconi B, Anzidei M, Leonardi A, et al. Analysis of CT features and quantitative texture analysis in patients with lung adenocarcinoma: a correlation with EGFR mutations and survival rates[J]. Clin Radiol, 2017, 72(6): 443450. DOI: 10.1016/j.crad.2017.01.015. [14] Rios Velazquez E, Parmar C, Liu Y, et al. Somatic mutations drive distinct imaging phenotypes in lung cancer[J]. Cancer Res, 2017, 77(14): 39223930. DOI: 10.1158/00085472.CAN170122. [15] Rizzo S, Petrella F, Buscarino V, et al. CT radiogenomic characterization of EGFR, KRAS, and ALK mutations in nonsmall cell lung cancer[J]. Eur Radiol, 2016, 26(1): 3242. DOI: 10.1007/s0033001538140. [16] Zhou JY, Zheng J, Yu ZF, et al. Comparative analysis of clinicoradiologic characteristics of lung adenocarcinomas with ALK rearrangements or EGFR mutations[J]. Eur Radiol, 2015, 25(5): 12571266. DOI: 10.1007/s003300143516z. [17] Kim TJ, Lee CT, Jheon SH, et al. Radiologic characteristics of surgically resected nonsmall cell lung cancer with ALK rearrangement or EGFR mutations[J]. Ann Thorac Surg, 2016, 101(2): 473480. DOI: 10.1016/j.athoracsur.2015.07.062. [18] Wang H, Schabath MB, Liu Y, et al. Clinical and CT characteristics of surgically resected lung adenocarcinomas harboring ALK rearrangements or EGFR mutations[J]. Eur J Radiol, 2016, 85(11): 19341940. DOI: 10.1016/j.ejrad.2016.08.023. [19] Choi CM, Kim MY, Hwang HJ, et al. Advanced adenocarcinoma of the lung: comparison of CT characteristics of patients with anaplastic lymphoma kinase gene rearrangement and those with epidermal growth factor receptor mutation[J]. Radiology, 2015, 275(1): 272279. DOI: 10.1148/radiol.14140848. [20] Plodkowski AJ, Drilon A, Halpenny DF, et al. From genotype to phenotype: are there imaging characteristics associated with lung adenocarcinomas harboring RET and ROS1 rearrangements?[J]. Lung Cancer, 2015, 90(2): 321325. DOI: 10.1016/j.lungcan.2015.09.018. [21] Yoon HJ, Sohn I, Cho JH, et al. Decoding tumor phenotypes for ALK, ROS1, and RET fusions in lung adenocarcinoma using a radiomics approach[J]. Medicine (Baltimore), 2015, 94(41): e1753. DOI: 10.1097/MD.0000000000001753. [22] Aerts HJ, Grossmann P, Tan Y, et al. Defining a radiomic response phenotype: a pilot study using targeted therapy in NSCLC[J]. Sci Rep, 2016, 6: 33860. DOI: 10.1038/srep33860. [23] Huynh E, Coroller TP, Narayan V, et al. CTbased radiomic analysis of stereotactic body radiation therapy patients with lung cancer[J]. Radiother Oncol, 2016, 120(2): 258266. DOI: 10.1016/j.radonc.2016.05.024. [24] Takeda K, Takanami K, Shirata Y, et al. Clinical utility of texture analysis of 18FFDG PET/CT in patients with stage Ⅰ lung cancer treated with stereotactic body radiotherapy[J]. J Radiat Res, 2017, 58(6): 862869. DOI: 10.1093/jrr/rrx050. [25] Coroller TP, Agrawal V, Narayan V, et al. Radiomic phenotype features predict pathological response in nonsmall cell lung cancer[J]. Radiother Oncol, 2016, 119(3): 480486. DOI: 10.1016/j.radonc.2016.04.004. [26] Coroller TP, Agrawal V, Huynh E, et al. Radiomicbased pathological response prediction from primary tumors and lymph nodes in NSCLC[J]. J Thorac Oncol, 2017, 12(3): 467476. DOI: 10.1016/j.jtho.2016.11.2226. [27] Grove O, Berglund AE, Schabath MB, et al. Quantitative computed tomographic descriptors associate tumor shape complexity and intratumor heterogeneity with prognosis in lung adenocarcinoma[J]. PLoS One, 2015, 10(3): e0118261. DOI: 10.1371/journal.pone.0118261. [28] Song J, Liu Z, Zhong W, et al. Nonsmall cell lung cancer: quantitative phenotypic analysis of CT images as a potential marker of prognosis[J]. Sci Rep, 2016, 6: 38282. DOI: 10.1038/srep38282. [29] Fried DV, Tucker SL, Zhou S, et al. Prognostic value and reproducibility of pretreatment CT texture features in stage Ⅲ nonsmall cell lung cancer[J]. Int J Radiat Oncol Biol Phys, 2014, 90(4): 834842. DOI: 10.1016/j.ijrobp.2014.07.020. [30] Huang Y, Liu Z, He L, et al. Radiomics signature: a potential biomarker for the prediction of diseasefree survival in earlystage (Ⅰ or Ⅱ) nonsmall cell lung cancer[J]. Radiology, 2016, 281(3): 947957. DOI: 10.1148/radiol.2016152234. [31] Depeursinge A, Yanagawa M, Leung AN, et al. Predicting adenocarcinoma recurrence using computational texture models of nodule components in lung CT[J]. Med Phys, 2015, 42(4): 20542063. DOI: 10.1118/1.4916088. [32] Zhao B, Tan Y, Tsai WY, et al. Reproducibility of radiomics for deciphering tumor phenotype with imaging[J]. Sci Rep, 2016, 6: 23428. DOI: 10.1038/srep23428. [33] He L, Huang Y, Ma Z, et al. Effects of contrastenhancement, reconstruction slice thickness and convolution kernel on the diagnostic performance of radiomics signature in solitary pulmonary nodule[J]. Sci Rep, 2016, 6: 34921. DOI: 10.1038/srep34921. [34] Fave X, Mackin D, Yang J, et al. Can radiomics features be reproducibly measured from CBCT images for patients with nonsmall cell lung cancer?[J]. Med Phys, 2015, 42(12): 67846797. DOI: 10.1118/1.4934826. |
[1] | Liu Na, Kou Jieli, Yang Feng, Liu Taotao, Li Danping, Han Junrui, Yang Lizhou. Clinical value of serum miR-106b-5p and miR-760 combined with low-dose spiral CT in the diagnosis of early lung cancer [J]. Journal of International Oncology, 2024, 51(6): 321-325. |
[2] | Fu Yi, Ma Chenying, Zhang Lu, Zhou Juying. Research progress of habitat analysis in radiomics of malignant tumors [J]. Journal of International Oncology, 2024, 51(5): 292-297. |
[3] | He Jiahui, Hu Qinyong. Comparative analysis of lung cancer incidence and mortality trends and risk factors in China and the United States based on GBD data [J]. Journal of International Oncology, 2024, 51(1): 29-36. |
[4] | Cao Xiaohui, Yu Hong, Li Wanhu. Application of CT-based radiomics analysis in predicting and identifying of treatment-associated pneumonitis [J]. Journal of International Oncology, 2023, 50(2): 107-111. |
[5] | Zuo Xiaoping, Liu Xiaochuan, Wu Xiqiang, Li Zhou, Xia Tian, Liu Guofeng. Risk factors and prediction model construction of arrhythmia in elderly patients with early lung cancer after thoracoscopic pulmonary resection [J]. Journal of International Oncology, 2023, 50(12): 711-716. |
[6] | Chen Yu, Xu Hua, Liu Hai, Chen Shixin. Construction of pathological classification prediction model for malignant pulmonary pure ground-glass nodule patients based on CT imaging [J]. Journal of International Oncology, 2023, 50(11): 655-660. |
[7] | Yang Sha, Yang Xiaohua, Wang Suhua, Xue Xiaoyan, Xu Jun. Analysis of risk factors for deep vein thrombosis of lower extremity after thoracoscopic surgery for elderly lung cancer and establishment and validation of prediction model [J]. Journal of International Oncology, 2022, 49(9): 532-536. |
[8] | Wu Jiayu, Liu Jiacheng. Research progress of radiomics toward lung adenocarcinoma manifesting as solitary ground glass nodule [J]. Journal of International Oncology, 2022, 49(8): 449-452. |
[9] | Chen Huangjing, Zhu Pengfei, Zhang Qing, Chen Guifang, Yang Chunlin, He Ying. Comparative study on the clinical value of contrast-enhanced ultrasound- and CT-guided percutaneous puncture biopsy in peripheral lung masses [J]. Journal of International Oncology, 2022, 49(8): 459-463. |
[10] | Cai Gangxiang, Li Jing, Xu Bin. Advances in neoadjuvant immunotherapy for lung cancer [J]. Journal of International Oncology, 2022, 49(6): 366-370. |
[11] | Zhang Jingxian, Yi Dan, Li Xiaojiang. Application of antibody-drug conjugates in the treatment of non-small cell lung cancer [J]. Journal of International Oncology, 2022, 49(5): 296-301. |
[12] | Gao Min, Feng Jing, Wang Li, Zhong Hai, Wen Yuting, Wan Bing, Zhang Xiuwei. Application of microbiota in the early diagnosis and adjunctive treatment of lung cancer [J]. Journal of International Oncology, 2022, 49(4): 247-251. |
[13] | Gao Shile, Lu Donghui, Liu Meiqin, Xu Xingjun, Ma Huan, Zhang Yu. Clinical efficacy and optimal dose of apatinib combined with chemotherapy in patients with advanced non-small cell lung cancer [J]. Journal of International Oncology, 2022, 49(3): 140-145. |
[14] | Xie Hongxia, Zuo Jinhui, Liao Dongying, Deng Renfen, Yao Yang, Jia Yingjie, Li Xiaojiang, Kong Fanming. Application of PD-L1 inhibitors in the treatment of non-small cell lung cancer [J]. Journal of International Oncology, 2022, 49(2): 111-115. |
[15] | Huang Huayu, Song Qibin, Gong Hongyun, Song Jia. Analysis on the incidence and risk factors of pneumonia in patients with lung cancer receiving thoracic radiotherapy and immunotherapy [J]. Journal of International Oncology, 2022, 49(12): 718-723. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||