Journal of International Oncology ›› 2022, Vol. 49 ›› Issue (4): 247-251.doi: 10.3760/cma.j.cn371439-20220208-00045
• Reviews • Previous Articles Next Articles
Gao Min, Feng Jing, Wang Li, Zhong Hai, Wen Yuting, Wan Bing, Zhang Xiuwei()
Received:
2022-02-08
Revised:
2022-03-21
Online:
2022-04-08
Published:
2022-05-11
Contact:
Zhang Xiuwei
E-mail:zhangxiuweiywy@126.com
Supported by:
Gao Min, Feng Jing, Wang Li, Zhong Hai, Wen Yuting, Wan Bing, Zhang Xiuwei. Application of microbiota in the early diagnosis and adjunctive treatment of lung cancer[J]. Journal of International Oncology, 2022, 49(4): 247-251.
[1] |
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
doi: 10.3322/caac.21660 |
[2] |
Tsay JJ, Wu BG, Sulaiman I, et al. Lower airway dysbiosis affects lung cancer progression[J]. Cancer Discov, 2021, 11(2): 293-307. DOI: 10.1158/2159-8290.CD-20-0263.
doi: 10.1158/2159-8290.CD-20-0263 |
[3] |
Budden KF, Gellatly SL, Wood DL, et al. Emerging pathogenic links between microbiota and the gut-lung axis[J]. Nat Rev Microbiol, 2017, 15(1): 55-63. DOI: 10.1038/nrmicro.2016.142.
doi: 10.1038/nrmicro.2016.142 |
[4] |
Liu X, Cheng Y, Zang D, et al. The role of gut microbiota in lung cancer: from carcinogenesis to immunotherapy[J]. Front Oncol, 2021, 11: 720842. DOI: 10.3389/fonc.2021.720842.
doi: 10.3389/fonc.2021.720842 |
[5] |
Zheng Y, Fang Z, Xue Y, et al. Specific gut microbiome signature predicts the early-stage lung cancer[J]. Gut Microbes, 2020, 11(4): 1030-1042. DOI: 10.1080/19490976.2020.1737487.
doi: 10.1080/19490976.2020.1737487 |
[6] |
Jungnickel C, Schmidt LH, Bittigkoffer L, et al. IL-17C mediates the recruitment of tumor-associated neutrophils and lung tumor growth[J]. Oncogene, 2017, 36(29): 4182-4190. DOI: 10.1038/onc.2017.28.
doi: 10.1038/onc.2017.28 pmid: 28346430 |
[7] |
Brevi A, Cogrossi LL, Grazia G, et al. Much more than IL-17A: cytokines of the IL-17 family between microbiota and cancer[J]. Front Immunol, 2020, 11: 565470. DOI: 10.3389/fimmu.2020.565470.
doi: 10.3389/fimmu.2020.565470 |
[8] |
Jin C, Lagoudas GK, Zhao C, et al. Commensal microbiota promote lung cancer development via γδT Cells[J]. Cell, 2019, 176(5): 998-1013. e16. DOI: 10.1016/j.cell.2018.12.040.
doi: 10.1016/j.cell.2018.12.040 |
[9] |
Salazar Y, Zheng X, Brunn D, et al. Microenvironmental Th9 and Th17 lymphocytes induce metastatic spreading in lung cancer[J]. J Clin Invest, 2020, 130(7): 3560-3575. DOI: 10.1172/JCI124037.
doi: 10.1172/JCI124037 pmid: 32229721 |
[10] |
Lee SC, Dacheux MA, Norman DD, et al. Regulation of tumor immunity by lysophosphatidic acid[J]. Cancers (Basel), 2020, 12(5): 1202. DOI: 10.3390/cancers12051202.
doi: 10.3390/cancers12051202 |
[11] |
Zhao F, An R, Wang L, et al. Specific gut microbiome and serum metabolome changes in lung cancer patients[J]. Front Cell Infect Microbiol, 2021, 11: 725284. DOI: 10.3389/fcimb.2021.725284.
doi: 10.3389/fcimb.2021.725284 |
[12] |
Chen H, Ma Y, Liu Z, et al. Circulating microbiome DNA: an emerging paradigm for cancer liquid biopsy[J]. Cancer Lett, 2021, 521: 82-87. DOI: 10.1016/j.canlet.2021.08.036.
doi: 10.1016/j.canlet.2021.08.036 |
[13] |
Liu F, Li J, Guan Y, et al. Dysbiosis of the gut microbiome is associated with tumor biomarkers in lung cancer[J]. Int J Biol Sci, 2019, 15(11): 2381-2392. DOI: 10.7150/ijbs.35980.
doi: 10.7150/ijbs.35980 |
[14] |
安江宏, 钱莘, 骆璞, 等. 肠道微生态与肿瘤的诊断和治疗[J]. 国际肿瘤学杂志, 2021, 48(7): 436-440. DOI: 10.3760/cma.j.cn371439-20201019-00084.
doi: 10.3760/cma.j.cn371439-20201019-00084 |
[15] |
Feng Q, Chen WD, Wang YD. Gut microbiota: an integral moderator in health and disease[J]. Front Microbiol, 2018, 9: 151. DOI: 10.3389/fmicb.2018.00151.
doi: 10.3389/fmicb.2018.00151 |
[16] |
Shen W, Tang D, Deng Y, et al. Association of gut microbiomes with lung and esophageal cancer: a pilot study[J]. World J Microbiol Biotechnol, 2021, 37(8): 128. DOI: 10.1007/s11274-021-03086-3.
doi: 10.1007/s11274-021-03086-3 |
[17] |
Hu L, Liu Y, Kong X, et al. Fusobacterium nucleatum facilitates M2 macrophage polarization and colorectal carcinoma progression by activating TLR4/NF-kB/S100A9 cascade[J]. Front Immunol, 2021, 12: 658681. DOI: 10.3389/fimmu.2021.658681.
doi: 10.3389/fimmu.2021.658681 |
[18] |
Greathouse KL, White JR, Vargas AJ, et al. Interaction between the microbiome and TP53 in human lung cancer[J]. Genome Biol, 2018, 19(1): 123. DOI: 10.1186/s13059-018-1501-6.
doi: 10.1186/s13059-018-1501-6 |
[19] |
Leng Q, Holden VK, Deepak J, et al. Microbiota biomarkers for lung cancer[J]. Diagnostics (Basel), 2021, 11(3): 407. DOI: 10.3390/diagnostics11030407.
doi: 10.3390/diagnostics11030407 |
[20] |
Tsay JJ, Wu BG, Badri MH, et al. Airway microbiota is associated with upregulation of the PI3K pathway in lung cancer[J]. Am J Respir Crit Care Med, 2018, 198(9): 1188-1198. DOI: 10.1164/rccm.201710-2118OC.
doi: 10.1164/rccm.201710-2118OC |
[21] |
Karki R, Man SM, Kanneganti TD. Inflammasomes and cancer[J]. Cancer Immunol Res, 2017, 5(2): 94-99. DOI: 10.1158/2326-6066.CIR-16-0269.
doi: 10.1158/2326-6066.CIR-16-0269 |
[22] |
Peters BA, Hayes RB, Goparaju C, et al. The microbiome in lung cancer tissue and recurrence-free survival[J]. Cancer Epidemiol Biomarkers Prev, 2019, 28(4): 731-740. DOI: 10.1158/1055-9965.EPI-18-0966.
doi: 10.1158/1055-9965.EPI-18-0966 |
[23] |
Yagi K, Huffnagle GB, Lukacs NW, et al. The lung microbiome during health and disease[J]. Int J Mol Sci, 2021, 22(19): 10872. DOI: 10.3390/ijms221910872.
doi: 10.3390/ijms221910872 |
[24] |
Poore GD, Kopylova E, Zhu Q, et al. Microbiome analyses of blood and tissues suggest cancer diagnostic approach[J]. Nature, 2020, 579(7800): 567-574. DOI: 10.1038/s41586-020-2095-1.
doi: 10.1038/s41586-020-2095-1 |
[25] |
Ran Z, Liu J, Wang F, et al. Pulmonary micro-ecological changes and potential microbial markers in lung cancer patients[J]. Front Oncol, 2021, 10: 576855. DOI: 10.3389/fonc.2020.576855.
doi: 10.3389/fonc.2020.576855 |
[26] | Liu Y, O’Brien JL, Ajami NJ, et al. Lung tissue microbial profile in lung cancer is distinct from emphysema[J]. Am J Cancer Res, 2018, 8(9): 1775-1787. |
[27] |
Lee SH, Sung JY, Yong D, et al. Characterization of microbiome in bronchoalveolar lavage fluid of patients with lung cancer compa-ring with benign mass like lesions[J]. Lung Cancer, 2016, 102: 89-95. DOI: 10.1016/j.lungcan.2016.10.016.
doi: 10.1016/j.lungcan.2016.10.016 |
[28] |
Roy S, Trinchieri G. Microbiota: a key orchestrator of cancer therapy[J]. Nat Rev Cancer, 2017, 17(5): 271-285. DOI: 10.1038/nrc.2017.13.
doi: 10.1038/nrc.2017.13 |
[29] |
Yu C, Zhou B, Xia X, et al. Prevotella copri is associated with carboplatin-induced gut toxicity[J]. Cell Death Dis, 2019, 10(10): 714. DOI: 10.1038/s41419-019-1963-9.
doi: 10.1038/s41419-019-1963-9 |
[30] |
Gui QF, Lu HF, Zhang CX, et al. Well-balanced commensal microbiota contributes to anti-cancer response in a lung cancer mouse model[J]. Genet Mol Res, 2015, 14(2): 5642-5651. DOI: 10.4238/2015.May.25.16.
doi: 10.4238/2015.May.25.16 pmid: 26125762 |
[31] |
Ramakrishna C, Corleto J, Ruegger PM, et al. Dominant role of the gut microbiota in chemotherapy induced neuropathic pain[J]. Sci Rep, 2019, 9(1): 20324. DOI: 10.1038/s41598-019-56832-x.
doi: 10.1038/s41598-019-56832-x pmid: 31889131 |
[32] |
Gopalakrishnan V, Spencer CN, Nezi L, et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients[J]. Science, 2018, 359(6371): 97-103. DOI: 10.1126/science.aan4236.
doi: 10.1126/science.aan4236 pmid: 29097493 |
[33] |
Routy B, Le Chatelier E, Derosa L, et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors[J]. Science, 2018, 359(6371): 91-97. DOI: 10.1126/science.aan3706.
doi: 10.1126/science.aan3706 |
[34] |
Zhang C, Wang J, Sun Z, et al. Commensal microbiota contributes to predicting the response to immune checkpoint inhibitors in non-small-cell lung cancer patients[J]. Cancer Sci, 2021, 112(8): 3005-3017. DOI: 10.1111/cas.14979.
doi: 10.1111/cas.14979 |
[35] |
Pinato DJ, Howlett S, Ottaviani D, et al. Association of prior antibiotic treatment with survival and response to immune checkpoint inhibitor therapy in patients with cancer[J]. JAMA Oncol, 2019, 5(12): 1774-1778. DOI: 10.1001/jamaoncol.2019.2785.
doi: 10.1001/jamaoncol.2019.2785 pmid: 31513236 |
[36] |
Lurienne L, Cervesi J, Duhalde L, et al. NSCLC immunotherapy efficacy and antibiotic use: a systematic review and meta-analysis[J]. J Thorac Oncol, 2020, 15(7): 1147-1159. DOI: 10.1016/j.jtho.2020.03.002.
doi: S1556-0864(20)30194-5 pmid: 32173463 |
[37] |
Wojas-Krawczyk K, Kalinka E, Grenda A, et al. Beyond PD-L1 markers for lung cancer immunotherapy[J]. Int J Mol Sci, 2019, 20(8): 1915. DOI: 10.3390/ijms20081915.
doi: 10.3390/ijms20081915 |
[38] |
Derosa L, Hellmann MD, Spaziano M, et al. Negative association of antibiotics on clinical activity of immune checkpoint inhibitors in patients with advanced renal cell and non-small-cell lung cancer[J]. Ann Oncol, 2018, 29(6): 1437-1444. DOI: 10.1093/annonc/mdy103.
doi: S0923-7534(19)34893-8 pmid: 29617710 |
[39] |
Vernocchi P, Gili T, Conte F, et al. Network analysis of gut microbiome and metabolome to discover microbiota-linked biomarkers in patients affected by non-small cell lung cancer[J]. Int J Mol Sci, 2020, 21(22): 8730. DOI: 10.3390/ijms21228730.
doi: 10.3390/ijms21228730 |
[40] |
Heshiki Y, Vazquez-Uribe R, Li J, et al. Predictable modulation of cancer treatment outcomes by the gut microbiota[J]. Microbiome, 2020, 8(1): 28. DOI: 10.1186/s40168-020-00811-2.
doi: 10.1186/s40168-020-00811-2 |
[1] | Liu Na, Kou Jieli, Yang Feng, Liu Taotao, Li Danping, Han Junrui, Yang Lizhou. Clinical value of serum miR-106b-5p and miR-760 combined with low-dose spiral CT in the diagnosis of early lung cancer [J]. Journal of International Oncology, 2024, 51(6): 321-325. |
[2] | Zhang Ningning, Yang Zhe, Tan Limei, Li Zhenning, Wang Di, Wei Yongzhi. Diagnostic value of cervical cell DNA ploidy analysis combined with B7-H4 and PKCδ for cervical cancer [J]. Journal of International Oncology, 2024, 51(5): 286-291. |
[3] | Peng Qin, Cai Yuting, Wang Wei. Advances on KPNA2 in liver cancer [J]. Journal of International Oncology, 2024, 51(3): 181-185. |
[4] | He Jiahui, Hu Qinyong. Comparative analysis of lung cancer incidence and mortality trends and risk factors in China and the United States based on GBD data [J]. Journal of International Oncology, 2024, 51(1): 29-36. |
[5] | Gu Huayan, Zhu Teng, Guo Guilong. Breast microbiota and breast cancer: present and future [J]. Journal of International Oncology, 2024, 51(1): 55-58. |
[6] | Huang Zhen, Chen Yongshun. Research progress of circulating tumor DNA in the diagnosis and treatment of hepatocellular carcinoma [J]. Journal of International Oncology, 2024, 51(1): 59-64. |
[7] | Zuo Xiaoping, Liu Xiaochuan, Wu Xiqiang, Li Zhou, Xia Tian, Liu Guofeng. Risk factors and prediction model construction of arrhythmia in elderly patients with early lung cancer after thoracoscopic pulmonary resection [J]. Journal of International Oncology, 2023, 50(12): 711-716. |
[8] | Chen Yu, Xu Hua, Liu Hai, Chen Shixin. Construction of pathological classification prediction model for malignant pulmonary pure ground-glass nodule patients based on CT imaging [J]. Journal of International Oncology, 2023, 50(11): 655-660. |
[9] | Tian Jinming, Yang Jijin. Research progress of locoregional interventional therapies combined with immune checkpoint inhibitors for intermediate-advanced hepatocellular carcinoma [J]. Journal of International Oncology, 2023, 50(10): 636-640. |
[10] | Yang Sha, Yang Xiaohua, Wang Suhua, Xue Xiaoyan, Xu Jun. Analysis of risk factors for deep vein thrombosis of lower extremity after thoracoscopic surgery for elderly lung cancer and establishment and validation of prediction model [J]. Journal of International Oncology, 2022, 49(9): 532-536. |
[11] | Song Jia, Hu Qinyong. Application of TACE combined with molecular targeted therapy and immunotherapy in BCLC B/C hepatocellular carcinoma [J]. Journal of International Oncology, 2022, 49(9): 550-554. |
[12] | Chen Huangjing, Zhu Pengfei, Zhang Qing, Chen Guifang, Yang Chunlin, He Ying. Comparative study on the clinical value of contrast-enhanced ultrasound- and CT-guided percutaneous puncture biopsy in peripheral lung masses [J]. Journal of International Oncology, 2022, 49(8): 459-463. |
[13] | Cai Gangxiang, Li Jing, Xu Bin. Advances in neoadjuvant immunotherapy for lung cancer [J]. Journal of International Oncology, 2022, 49(6): 366-370. |
[14] | Liu Xiaoting, Liu Yang, Zhang Huanqin, Xing Jinliang, Quan Zhibo. Application of tumor biomarkers in the diagnosis and prognosis of hepatocellular carcinoma [J]. Journal of International Oncology, 2022, 49(6): 371-375. |
[15] | Zhang Jingxian, Yi Dan, Li Xiaojiang. Application of antibody-drug conjugates in the treatment of non-small cell lung cancer [J]. Journal of International Oncology, 2022, 49(5): 296-301. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||