Journal of International Oncology ›› 2025, Vol. 52 ›› Issue (5): 319-324.doi: 10.3760/cma.j.cn371439-20250328-00054
• Review • Previous Articles Next Articles
Guo Haiyang, Hong Yonggang, Hao Liqiang()
Received:
2025-03-28
Revised:
2025-04-03
Online:
2025-05-08
Published:
2025-06-24
Contact:
Hao Liqiang
E-mail:hao_liqiang@139.com
Supported by:
Guo Haiyang, Hong Yonggang, Hao Liqiang. Role and research progress of ferroptosis in colorectal cancer[J]. Journal of International Oncology, 2025, 52(5): 319-324.
[1] | Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024, 74(3): 229-263. DOI: 10.3322/caac.21834. |
[2] |
Biller LH, Schrag D. Diagnosis and treatment of metastatic colorectal cancer: a review[J]. JAMA, 2021, 325(7): 669-685. DOI: 10. 1001/jama.2021.0106.
pmid: 33591350 |
[3] | 詹海峰, 王文学, 耿嘉蔚. 晚期结直肠癌精准分子靶向治疗研究进展[J]. 国际肿瘤学杂志, 2024, 51(9): 601-605. DOI: 10.3760/cma.j.cn371439-20240522-00100. |
[4] | Li J, Cao F, Yin HL, et al. Ferroptosis: past, present and future[J]. Cell Death Dis, 2020, 11(2): 88. DOI: 10.1038/s41419-020-2298-2. |
[5] | Deng L, He S, Guo N, et al. Molecular mechanisms of ferroptosis and relevance to inflammation[J]. Inflamm Res, 2023, 72(2): 281-299. DOI: 10.1007/s00011-022-01672-1. |
[6] | Wang S, Guo Q, Zhou L, et al. Ferroptosis: a double-edged sword[J]. Cell Death Discov, 2024, 10(1): 265. DOI: 10.1038/s41420-024-02037-9. |
[7] | Saltz LB, Cox JV, Blanke C, et al. Irinotecan plus fluorouracil and leucovorin for metastatic colorectal cancer. Irinotecan study group[J]. N Engl J Med, 2000, 343(13): 905-914. DOI: 10.1056/NEJM200 009283431302. |
[8] | Wang Y, Zhang Z, Sun W, et al. Ferroptosis in colorectal cancer: potential mechanisms and effective therapeutic targets[J]. Biomed Pharmacother, 2022, 153: 113524. DOI: 10.1016/j.biopha.2022. 113524. |
[9] | Yan H, Talty R, Aladelokun O, et al. Ferroptosis in colorectal cancer: a future target?[J]. Br J Cancer, 2023, 128(8): 1439-1451. DOI: 10.1038/s41416-023-02149-6. |
[10] |
Lei G, Zhuang L, Gan B. The roles of ferroptosis in cancer: tumor suppression, tumor microenvironment, and therapeutic interventions[J]. Cancer Cell, 2024, 42(4): 513-534. DOI: 10.1016/j.ccell. 2024.03.011.
pmid: 38593779 |
[11] |
Stockwell BR. Ferroptosis turns 10: emerging mechanisms, physiological functions, and therapeutic applications[J]. Cell, 2022, 185(14): 2401-2421. DOI: 10.1016/j.cell.2022.06.003
pmid: 35803244 |
[12] | Hernández Borrero LJ, El-Deiry WS. Tumor suppressor p53: biology, signaling pathways, and therapeutic targeting[J]. Biochim Biophys Acta Rev Cancer, 2021, 1876( 1): 188556. DOI: 10.1016/j.bbcan. 2021.188556. |
[13] | Jiang L, Kon N, Li T, et al. Ferroptosis as a p53-mediated activity during tumour suppression[J]. Nature, 2015, 520(7545): 57-62. DOI: 10.1038/nature14344. |
[14] | Zhao Y, Ma R, Wang C, et al. CAPG interference induces apoptosis and ferroptosis in colorectal cancer cells through the P53 pathway[J]. Mol Cell Probes, 2023, 71: 101919. DOI: 10.1016/j.mcp. 2023.101919. |
[15] |
Ming T, Lei J, Peng Y, et al. Curcumin suppresses colorectal cancer by induction of ferroptosis via regulation of p53 and solute carrier family 7 member 11/glutathione/glutathione peroxidase 4 signaling axis[J]. Phytother Res, 2024, 38(8): 3954-3972. DOI: 10.1002/ptr.8258.
pmid: 38837315 |
[16] |
Lee H, Zandkarimi F, Zhang Y, et al. Energy-stress-mediated AMPK activation inhibits ferroptosis[J]. Nat Cell Biol, 2020, 22(2): 225-234. DOI: 10.1038/s41556-020-0461-8.
pmid: 32029897 |
[17] | Han WM, Hong YX, Xiao GS, et al. NMDARs activation regulates endothelial ferroptosis via the PP2A-AMPK-HMGB1 axis[J]. Cell Death Discov, 2024, 10(1): 34. DOI: 10.1038/s41420-023-01794-3. |
[18] | Yi J, Zhu J, Wu J, et al. Oncogenic activation of PI3K-AKT-mTOR signaling suppresses ferroptosis via SREBP-mediated lipogenesis[J]. Proc Natl Acad Sci U S A, 2020, 117(49): 31189-31197. DOI: 10.1073/pnas.2017152117. |
[19] |
Fan F, Liu P, Bao R, et al. A dual PI3K/HDAC inhibitor induces immunogenic ferroptosis to potentiate cancer immune checkpoint therapy[J]. Cancer Res, 2021, 81(24): 6233-6245. DOI: 10.1158/0008-5472.Can-21-1547.
pmid: 34711611 |
[20] |
Ma S, Meng Z, Chen R, et al. The hippo pathway: biology and pathophysiology[J]. Annu Rev Biochem, 2019, 88: 577-604. DOI: 10.1146/annurev-biochem-013118-111829.
pmid: 30566373 |
[21] | Wu J, Minikes AM, Gao M, et al. Intercellular interaction dictates cancer cell ferroptosis via NF2-YAP signalling[J]. Nature, 2019, 572(7769): 402-406. DOI: 10.1038/s41586-019-1426-6. |
[22] |
Ou C, Sun Z, Li S, et al. Dual roles of yes-associated protein (YAP) in colorectal cancer[J]. Oncotarget, 2017, 8(43): 75727-75741. DOI: 10.18632/oncotarget.20155.
pmid: 29088905 |
[23] | Sato M, Kusumi R, Hamashima S, et al. The ferroptosis inducer erastin irreversibly inhibits system xc- and synergizes with cisplatin to increase cisplatin's cytotoxicity in cancer cells[J]. Sci Rep, 2018, 8(1): 968. DOI: 10.1038/s41598-018-19213-4. |
[24] |
Sun Y, Deng R, Zhang C. Erastin induces apoptotic and ferroptotic cell death by inducing ROS accumulation by causing mitochondrial dysfunction in gastric cancer cell HGC‑27[J]. Mol Med Rep, 2020, 22(4): 2826-2832. DOI: 10.3892/mmr.2020.11376.
pmid: 32945484 |
[25] |
Sui X, Zhang R, Liu S, et al. RSL3 drives ferroptosis through GPX4 inactivation and ROS production in colorectal cancer[J]. Front Pharmacol, 2018, 9: 1371. DOI: 10.3389/fphar.2018.01371.
pmid: 30524291 |
[26] | Zheng C, Wang C, Sun D, et al. Structure-activity relationship study of RSL3-based GPX4 degraders and its potential noncovalent optimization[J]. Eur J Med Chem, 2023, 255: 115393. DOI: 10. 1016/j.ejmech.2023.115393. |
[27] | Yang J, Mo J, Dai J, et al. Cetuximab promotes RSL3-induced ferroptosis by suppressing the Nrf2/HO-1 signalling pathway in KRAS mutant colorectal cancer[J]. Cell Death Dis, 2021, 12(11): 1079. DOI: 10.1038/s41419-021-04367-3. |
[28] | Zhang Y, Song Q, Zhang Y, et al. Iron-based nanovehicle delivering fin56 for hyperthermia-boosted ferroptosis therapy against osteosarcoma[J]. Int J Nanomedicine, 2024, 19: 91-107. DOI: 10.2147/ijn.S441112. |
[29] | Du Y, Guo Z. Recent progress in ferroptosis: inducers and inhibitors[J]. Cell Death Discov, 2022, 8(1): 501. DOI: 10.1038/s41420-022-01297-7. |
[30] | Zoetemelk M, Ramzy GM, Rausch M, et al. Drug-drug interactions of irinotecan, 5-fluorouracil, folinic acid and oxaliplatin and its activity in colorectal carcinoma treatment[J]. Molecules, 2020, 25(11): 2614. DOI: 10.3390/molecules25112614. |
[31] | Liu J, Bi K, Yang R, et al. Role of DNA damage and repair in radiation cancer therapy: a current update and a look to the future[J]. Int J Radiat Biol, 2020, 96(11): 1329-1338. DOI: 10.1080/09553002.2020.1807641. |
[32] | Zheng Y, Sun L, Guo J, et al. The crosstalk between ferroptosis and anti-tumor immunity in the tumor microenvironment: molecular mechanisms and therapeutic controversy[J]. Cancer Commun, 2023, 43(10): 1071-1096. DOI: 10.1002/cac2.12487. |
[33] | Guo XW, Lei RE, Zhou QN, et al. Tumor microenvironment characterization in colorectal cancer to identify prognostic and immunotherapy genes signature[J]. BMC Cancer, 2023, 23(1): 773. DOI: 10.1186/s12885-023-11277-4. |
[34] | Zhou X, Kandalai S, Hossain F, et al. Tumor microbiome metabolism:A game changer in cancer development and therapy[J]. Front Oncol, 2022, 12: 933407. DOI: 10.3389/fonc.2022.933407. |
[35] | Singhal R, Mitta SR, Das NK, et al. HIF-2α activation potentiates oxidative cell death in colorectal cancers by increasing cellular iron[J]. J Clin Invest, 2021, 131(12): 143691. DOI: 10.1172/jci143691. |
[36] | Chun Y, Kim J. AMPK-mTOR signaling and cellular adaptations in hypoxia[J]. Int J Mol Sci, 2021, 22(18): 9765. DOI: 10.3390/ijms22189765. |
[37] | Yu Z, Tong S, Wang C, et al. PPy@Fe3O4 nanoparticles inhibit the proliferation and metastasis of CRC via suppressing the NF-κ B signaling pathway and promoting ferroptosis[J]. Front Bioeng Biotechnol, 2022, 10: 1001994. DOI: 10.3389/fbioe.2022.1001994. |
[38] | Li Y, Chen J, Xia Q, et al. Photothermal Fe3O4 nanoparticles induced immunogenic ferroptosis for synergistic colorectal cancer therapy[J]. J Nanobiotechnology, 2024, 22(1): 630. DOI: 10. 1186/s12951-024-02909-3. |
[39] | Dai SM, Li FJ, Long HZ, et al. Relationship between miRNA and ferroptosis in tumors[J]. Front Pharmacol, 2022, 13: 977062. DOI: 10.3389/fphar.2022.977062. |
[40] | Yang G, Qian B, He L, et al. Application prospects of ferroptosis in colorectal cancer[J]. Cancer Cell Int, 2025, 25(1): 59. DOI: 10.1186/s12935-025-03641-0. |
[41] | Elrebehy MA, Abdelghany TM, Elshafey MM, et al. miR-509-5p promotes colorectal cancer cell ferroptosis by targeting SLC7A11[J]. Pathol Res Pract, 2023, 247: 154557. DOI: 10.1016/j.prp.2023. 154557. |
[42] | Zhang Z, Huang Q, Yu L, et al. The role of miRNA in tumor immune escape and miRNA-based therapeutic strategies[J]. Front Immunol, 2021, 12: 807895. DOI: 10.3389/fimmu.2021.807895. |
[43] |
Fan H, Ai R, Mu S, et al. MiR-19a suppresses ferroptosis of colorectal cancer cells by targeting IREB2[J]. Bioengineered, 2022, 13(5): 12021-12029. DOI: 10.1080/21655979.2022.2054194.
pmid: 35599631 |
[44] | Wang T, Liang S, Li Y, et al. Downregulation of lncRNA SLC7A11-AS1 decreased the NRF2/SLC7A11 expression and inhibited the progression of colorectal cancer cells[J]. PeerJ, 2023, 11: e15216. DOI: 10.7717/peerj.15216. |
[45] | Han Y, Gao X, Wu N, et al. Long noncoding RNA LINC00239 inhibits ferroptosis in colorectal cancer by binding to Keap1 to stabilize Nrf2[J]. Cell Death Dis, 2022, 13(8): 742. DOI: 10. 1038/s41419-022-05192-y. |
[46] | Li Q, Li K, Guo Q, et al. CircRNA circSTIL inhibits ferroptosis in colorectal cancer via miR-431/SLC7A11 axis[J]. Environ Toxicol, 2023, 38(5): 981-989. DOI: 10.1002/tox.23670. |
[47] | Zhang W, Liu Y, Liao Y, et al. GPX4, ferroptosis, and diseases[J]. Biomed Pharmacother, 2024, 174: 116512. DOI: 10.1016/j.biopha.2024.116512. |
[48] | Huang Y, Yang W, Yang L, et al. Nrf2 inhibition increases sensitivity to chemotherapy of colorectal cancer by promoting ferroptosis and pyroptosis[J]. Sci Rep, 2023, 13(1): 14359. DOI: 10.1038/s41598-023-41490-x. |
[49] | Wang J, Wu N, Peng M, et al. Ferritinophagy: research advance and clinical significance in cancers[J]. Cell Death Discov, 2023, 9(1): 463. DOI: 10.1038/s41420-023-01753-y. |
[50] | Ding K, Liu C, Li L, et al. Acyl-CoA synthase ACSL4: an essential target in ferroptosis and fatty acid metabolism[J]. Chin Med J (Engl), 2023, 136(21): 2521-2537. DOI: 10.1097/cm9.000000 0000002533. |
[51] | Dai G, Wang D, Ma S, et al. ACSL4 promotes colorectal cancer and is a potential therapeutic target of emodin[J]. Phytomedicine, 2022, 102: 154149. DOI: 10.1016/j.phymed.2022.154149. |
[52] | Lee J, Roh JL. SLC7A11 as a gateway of metabolic perturbation and ferroptosis vulnerability in cancer[J]. Antioxidants (Basel), 2022, 11(12): 2444. DOI: 10.3390/antiox11122444. |
[53] | He J, Ding H, Li H, et al. Intra-tumoral expression of SLC7A11 is associated with immune microenvironment, drug resistance, and prognosis in cancers: a pan-cancer analysis[J]. Front Genet, 2021, 12: 770857. DOI: 10.3389/fgene.2021.770857. |
[54] |
Hendricks JM, Doubravsky CE, Wehri E, et al. Identification of structurally diverse FSP1 inhibitors that sensitize cancer cells to ferroptosis[J]. Cell Chem Biol, 2023, 30(9): 1090-1103.e7. DOI: 10.1016/j.chembiol.2023.04.007.
pmid: 37178691 |
[55] |
Li W, Liang L, Liu S, et al. FSP1: a key regulator of ferroptosis[J]. Trends Mol Med, 2023, 29(9): 753-764. DOI: 10.1016/j.molmed. 2023.05.013.
pmid: 37357101 |
[1] | Wang Yong, Wu Xinlin. Related molecular mechanisms of liver metastasis from colorectal cancer [J]. Journal of International Oncology, 2025, 52(6): 388-391. |
[2] | Zheng Siqi, Guo Ting, Wang Jing, Tian Yinghong, Zhang Xingmei. Advances in aptamers screening and the applications in cancer therapy [J]. Journal of International Oncology, 2025, 52(5): 304-308. |
[3] | Wang Yi, Wang Qiangli, Zhang Jia, Yang Yijin, Wang Sheng. Relationship between the expression of SUCNR1 and YBX1 in tissues of patients with colorectal cancer liver metastases and their clinicopathological characteristics and prognosis [J]. Journal of International Oncology, 2025, 52(3): 152-157. |
[4] | Yu Yang, Tang Shimin, Yang Lu, Li Na. Research progress in treatment strategies and prognostic factors for stage pT2-3N0M0 thoracic esophageal squamous cell carcinoma [J]. Journal of International Oncology, 2025, 52(1): 43-47. |
[5] | Zhan Haifeng, Tan Zixuan, Wang Wenxue, Geng Jiawei. Research progress of circadian genes in the occurrence, development and chronotherapy of colorectal cancer [J]. Journal of International Oncology, 2025, 52(1): 60-64. |
[6] | Wei Wei, Cai Zhaoying, Qian Yayun. Effect of Marsdenia tenacissima combined with XELOX solution on disulfide apoptosis in human colorectal cancer HCT116 cells [J]. Journal of International Oncology, 2024, 51(9): 545-555. |
[7] | Zhan Haifeng, Wang Wenxue, Geng Jiawei. Research progress in precise molecular targeted therapy for advanced colorectal cancer [J]. Journal of International Oncology, 2024, 51(9): 601-605. |
[8] | Li Zhiwei, Zhai Chunbao. Research progress on the anti-cancer effect of traditional Chinese medicine polyphenols on colorectal cancer [J]. Journal of International Oncology, 2024, 51(8): 526-531. |
[9] | Han Yi, Zhang Tongmei, Qi Fei, Zhang Yong. Advances in clinical molecular diagnosis and treatment of pulmonary large cell neuroendocrine carcinoma [J]. Journal of International Oncology, 2024, 51(7): 468-473. |
[10] | Zhang Rui, Chu Yanliu. Research progress of colorectal cancer risk assessment models based on FIT and gut microbiota [J]. Journal of International Oncology, 2024, 51(6): 370-375. |
[11] | Gao Fan, Wang Ping, Du Chao, Chu Yanliu. Research progress on intestinal flora and non-surgical treatment of the colorectal cancer [J]. Journal of International Oncology, 2024, 51(6): 376-381. |
[12] | Wang Junyi, Hong Kaibin, Ji Rongjia, Chen Dachao. Effect of cancer nodules on liver metastases after radical resection of colorectal cancer [J]. Journal of International Oncology, 2024, 51(5): 280-285. |
[13] | Wang Peixin, Zhao Jun, Xu Shihong, Jiang Zhaoyang, Wang Xiaoqiang, Yang Hongjuan. Progress of ferroptosis-related mechanisms in osteosarcoma [J]. Journal of International Oncology, 2024, 51(5): 308-311. |
[14] | Wang Zihao, Wang Yu, Yang Xin, He Yi, Mo Xingkui, Yuan Tao. Research progress on the molecular mechanism and related treatments of ferroptosis in osteosarcoma [J]. Journal of International Oncology, 2024, 51(4): 239-244. |
[15] | Sun Guobao, Yang Qian, Zhuang Qingchun, Gao Binbin, Sun Xiaogang, Song Wei, Sha Dan. Research progress on the histopathological growth patterns of colorectal liver metastasis [J]. Journal of International Oncology, 2024, 51(2): 114-118. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||