Journal of International Oncology ›› 2024, Vol. 51 ›› Issue (9): 545-555.doi: 10.3760/cma.j.cn371439-20240422-00092
• Original Articles • Previous Articles Next Articles
Wei Wei1, Cai Zhaoying2, Qian Yayun2()
Received:
2024-04-22
Revised:
2024-05-23
Online:
2024-09-08
Published:
2024-10-12
Contact:
Qian Yayun
E-mail:yyqian@yzu.edu.cn
Supported by:
Wei Wei, Cai Zhaoying, Qian Yayun. Effect of Marsdenia tenacissima combined with XELOX solution on disulfide apoptosis in human colorectal cancer HCT116 cells[J]. Journal of International Oncology, 2024, 51(9): 545-555.
"
药物 | 细胞活性 | F值 | P值 | 药物 | 细胞活性 | F值 | P值 |
---|---|---|---|---|---|---|---|
卡培他滨(μg/ml) | 加入BAY-876后的卡培他滨(μg/ml) | ||||||
0 | 100.00±0.00 | 644.60 | <0.001 | 0 | 100.00±0.00 | 1 066.00 | <0.001 |
0.3 | 86.49±1.08 | 0.3 | 87.65±0.64 | ||||
0.6 | 77.91±1.08 | 0.6 | 76.53±0.91 | ||||
1.2 | 75.59±1.64 | 1.2 | 73.93±1.33 | ||||
2.4 | 64.38±1.96 | 2.4 | 64.96±1.50 | ||||
4.8 | 47.19±0.58 | 4.8 | 46.48±0.70 | ||||
奥沙利铂(μg/ml) | 加入BAY-876后的奥沙利铂(μg/ml) | ||||||
0 | 100.00±0.00 | 417.30 | <0.001 | 0 | 100.00±0.00 | 847.70 | <0.001 |
10 | 75.79±3.20 | 10 | 74.03±2.04 | ||||
20 | 67.57±2.16 | 20 | 65.43±1.12 | ||||
40 | 54.36±0.90 | 40 | 54.34±0.92 | ||||
80 | 51.06±0.89 | 80 | 51.38±0.85 | ||||
160 | 48.33±0.24 | 160 | 47.38±1.07 | ||||
通关藤(mg/ml) | 加入BAY-876后的通关藤(mg/ml) | ||||||
0 | 100.00±0.00 | 107.50 | <0.001 | 0 | 100.00±0.00 | 619.70 | <0.001 |
15 | 108.00±1.98 | 15 | 107.50±0.86 | ||||
30 | 116.10±4.34 | 30 | 121.50±5.18 | ||||
60 | 124.10±5.35 | 60 | 128.50±1.06 | ||||
120 | 75.56±1.59 | 120 | 77.90±3.87 | ||||
240 | 21.71±1.73 | 240 | 20.77±1.23 | ||||
葡萄糖抑制剂BAY-876(μg/ml) | |||||||
0 | 100.00±0.00 | 1 028.00 | <0.001 | ||||
4 | 64.99±0.93 | ||||||
8 | 60.64±1.04 | ||||||
16 | 58.95±0.90 | ||||||
32 | 55.62±1.46 | ||||||
64 | 47.39±1.01 |
"
组别 | 葡萄糖浓度 | 加入BAY-876后的葡萄糖浓度 | t值 | P值 |
---|---|---|---|---|
阴性对照组 | 19.91±0.13 | 11.44±0.10 | 86.50 | <0.001 |
卡培他滨组 | 22.82±0.88a | 11.73±0.72 | 16.90 | <0.001 |
奥沙利铂组 | 11.87±0.14ab | 8.98±0.40ab | 11.83 | <0.001 |
通关藤组 | 17.93±0.14abc | 14.25±0.33abc | 17.79 | <0.001 |
XELOX方案组 | 10.53±0.10abcd | 6.77±1.50abcd | 4.35 | 0.012 |
通关藤联合XELOX方案组 | 7.56±0.08abcde | 1.56±0.17abcde | 54.34 | <0.001 |
F值 | 762.60 | 118.80 | ||
P值 | <0.001 | <0.001 |
"
组别 | NADPH水平 | 加入葡萄糖抑制剂BAY-876后NADPH水平 | t值 | P值 |
---|---|---|---|---|
阴性对照组 | 131.80±2.61 | 92.33±0.23 | 26.11 | <0.001 |
卡培他滨组 | 93.87±1.00a | 88.63±0.31a | 8.62 | <0.001 |
奥沙利铂组 | 136.50±3.69b | 97.33±2.02ab | 16.13 | <0.001 |
通关藤组 | 105.70±0.84abc | 81.77±1.33abc | 26.38 | <0.001 |
XELOX方案组 | 146.90±2.94abcd | 102.80±1.61abcd | 22.78 | <0.001 |
通关藤联合XELOX方案组 | 105.00±2.25abce | 85.13±0.45abcde | 14.97 | <0.001 |
F值 | 225.60 | 125.50 | ||
P值 | <0.001 | <0.001 |
"
组别 | 胱氨酸荧光强度 | 加入葡萄糖抑制剂BAY-876后胱氨酸荧光强度 | t值 | P值 |
---|---|---|---|---|
阴性对照组 | 607.30±8.76 | 929.60±6.88 | 50.09 | <0.001 |
卡培他滨组 | 655.70±6.57a | 1 049.00±22.35a | 29.26 | <0.001 |
奥沙利铂组 | 647.10±19.35a | 1 021.00±29.49a | 18.34 | <0.001 |
通关藤组 | 737.80±6.34abc | 1 094.00±16.17ac | 35.53 | <0.001 |
XELOX方案组 | 756.00±8.65abc | 1 137.00±10.08abc | 49.66 | <0.001 |
通关藤联合XELOX方案组 | 846.60±11.70abcde | 1 230.00±46.57abcde | 13.83 | <0.001 |
F值 | 188.00 | 48.32 | ||
P值 | <0.001 | <0.001 |
"
组别 | 半胱氨酸含量 | 加入葡萄糖抑制剂BAY-876后半胱氨酸含量 | t值 | P值 |
---|---|---|---|---|
阴性对照组 | 457.00±30.69 | 100.30±16.57 | 17.71 | <0.001 |
卡培他滨组 | 581.20±30.69a | 472.90±19.10a | 5.19 | 0.006 |
奥沙利铂组 | 326.40±5.49ab | 262.70±28.65ab | 3.78 | 0.019 |
通关藤组 | 374.20±5.54ab | 348.70±9.55abc | 4.00 | 0.016 |
XELOX方案组 | 565.30±5.54acd | 533.40±11.03abcd | 4.47 | 0.011 |
通关藤联合XELOX方案组 | 246.80±30.69abcde | 30.23±5.49abcde | 12.03 | <0.001 |
F值 | 110.00 | 423.50 | ||
P值 | <0.001 | <0.001 |
[1] | Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024, 74(3): 229-263. DOI: 10.3322/caac.21834. |
[2] | 胡淼, 刘玲, 顾佳麟, 等. 早发性结直肠癌的研究进展[J]. 中国肿瘤外科杂志, 2022, 14(2): 195-199. DOI:10.3969/j.issn.1674-4136.2022.02.018. |
[3] | Wang P, Yang J, Zhu Z, et al. Marsdenia tenacissima: a review of traditional uses, phytochemistry and pharmacology[J]. Am J Chin Med, 2018: 1-32. DOI: 10.1142/S0192415X18500751. |
[4] | Chen L, Gong X, Huang M. Marsdenia tenacissima extract prevents the malignant progression of glioma through upregulating lncRNA MEG3 and SFRP1-dependent inhibition of Wnt/β-catenin pathway[J]. CNS Neurosci Ther, 2023, 29(5): 1272-1289. DOI: 10.1111/cns.14100. |
[5] |
Wang X, Yan Y, Chen X, et al. The antitumor activities of marsdenia tenacissima[J]. Front Oncol, 2018, 8: 473. DOI: 10.3389/fonc.2018.00473.
pmid: 30406035 |
[6] | 魏伟, 吴希美, 李元建. 药理实验方法学[M]. 第4版. 北京: 人民卫生出版社, 2010. |
[7] | 付宜拥, 闫海良, 高龙潭. 参苓白术散辅助FOLFOX6化疗治疗中晚期结直肠癌临床观察[J]. 中医药临床杂志, 2022, 34(12): 2359-2362. DOI: 10.16448/j.cjtcm.2022.1236. |
[8] |
Li Z, Yin DF, Wang W, et al. Efficacy of Yiqi Jianpi anti-cancer prescription combined with chemotherapy in patients with colorectal cancer after operation[J]. World J Clin Cases, 2021, 9(32): 9869-9877. DOI: 10.12998/wjcc.v9.i32.9869.
pmid: 34877325 |
[9] | Liu S, Zhang K, Hu X. Comparative efficacy and safety of Chinese medicine injections combined with capecitabine and oxaliplatin chemotherapies in treatment of colorectal cancer: a bayesian network meta-analysis[J]. Front Pharmacol, 2022, 13: 1004259. DOI: 10.3389/fphar.2022.1004259. |
[10] | Li R, Zhang T, Yan SH, et al. Chinese medicine combined with adjuvant chemotherapy for improving myelosuppression in colorectal cancer patients: a systematic review and network meta-analysis[J]. Chin J Integr Med, 2024, 30(7): 643-652. DOI: 10.1007/s11655-023-3558-7. |
[11] | Jiao YN, Wu LN, Xue D, et al. Marsdenia tenacissima extract induces apoptosis and suppresses autophagy through ERK activation in lung cancer cells[J]. Cancer Cell Int, 2018, 18: 149. DOI: 10.1186/s12935-018-0646-4. |
[12] | Wang K, Liu W, Xu Q, et al. Tenacissoside G synergistically potentiates inhibitory effects of 5-fluorouracil to human colorectal cancer[J]. Phytomedicine, 2021, 86: 153553. DOI: 10.1016/j.phymed.2021.153553. |
[13] | Chan DA, Sutphin PD, Nguyen P, et al. Targeting GLUT1 and the warburg effect in renal cell carcinoma by chemical synthetic lethality[J]. Sci Transl Med, 2011, 3(94): 94ra70. DOI: 10.1126/scitranslmed.3002394. |
[14] | Wu Q, Ba-Alawi W, Deblois G, et al. GLUT1 inhibition blocks growth of RB1-positive triple negative breast cancer[J]. Nat Commun, 2020, 11(1): 4205. DOI: 10.1038/s41467-020-18020-8. |
[15] | Ma Y, Wang W, Idowu MO, et al. Ovarian cancer relies on glucose transporter 1 to fuel glycolysis and growth: anti-tumor activity of BAY-876[J]. Cancers (Basel), 2018, 11(1): 33. DOI: 10.3390/cancers11010033. |
[16] | Zhao D, Meng Y, Dian Y, et al. Molecular landmarks of tumor disulfidptosis across cancer types to promote disulfidptosis-target therapy[J]. Redox Biol, 2023, 68: 102966. DOI: 10.1016/j.redox.2023.102966. |
[17] | Liu L, Liu J, Lyu Q, et al. Disulfidptosis-associated lncRNAs index predicts prognosis and chemotherapy drugs sensitivity in cervical cancer[J]. Sci Rep, 2023, 13(1): 12470. DOI: 10.1038/s41598-023-39669-3. |
[18] |
Obeng E. Apoptosis (programmed cell death) and its signals—a review[J]. Braz J Biol, 2021, 81(4): 1133-1143. DOI: 10.1590/1519-6984.228437.
pmid: 33111928 |
[19] | Wu K, Zhu Z, He Y, et al. Efficacy and safety of Xiao Ai Ping injection combined with chemotherapy in advanced gastric cancer: a systematic review and meta-analysis[J]. Evid Based Complement Alternat Med, 2019, 2019: 3821053. DOI: 10.1155/2019/3821053. |
[20] | 刘雪玲. 消癌平片联合调强适形放射治疗老年腹腔镜直肠癌根治术后复发的临床疗效观察[J]. 医学理论与实践, 2019, 32(22): 3649-3651. DOI: 10.19381/j.issn.1001-7585.2019.22.033. |
[21] | Yan Y, Teng H, Hang Q, et al. SLC7A11 expression level dictates differential responses to oxidative stress in cancer cells[J]. Nat Commun, 2023, 14(1): 3673. DOI: 10.1038/s41467-023-39401-9. |
[22] |
D'Arcy MS. Cell death: a review of the major forms of apoptosis, necrosis and autophagy[J]. Cell Biol Int, 2019, 43(6): 582-592. DOI: 10.1002/cbin.11137.
pmid: 30958602 |
[23] |
Liu X, Nie L, Zhang Y, et al. Actin cytoskeleton vulnerability to disulfide stress mediates disulfidptosis[J]. Nat Cell Biol, 2023, 25(3): 404-414. DOI: 10.1038/s41556-023-01091-2.
pmid: 36747082 |
[24] | Nath P, Alfarsi LH, El-Ansari R, et al. The amino acid transporter SLC7A11 expression in breast cancer[J]. Cancer Biol Ther, 2024, 25(1): 2291855. DOI: 10.1080/15384047.2023.2291855. |
[25] |
Liu X, Olszewski K, Zhang Y, et al. Cystine transporter regulation of pentose phosphate pathway dependency and disulfide stress exposes a targetable metabolic vulnerability in cancer[J]. Nat Cell Biol, 2020, 22(4): 476-486. DOI: 10.1038/s41556-020-0496-x.
pmid: 32231310 |
[26] | Gu Q, An Y, Xu M, et al. Disulfidptosis, a novel cell death pathway: molecular landscape and therapeutic implications[J/OL]. Aging Dis, 2024: In press. DOI: 10.14336/AD.2024.0083. [2024-05-08][2024-06-12]. https://pubmed.ncbi.nlm.nih.gov/38739940/. |
[27] | Zhong Z, Zhang C, Ni S, et al. NFATc1-mediated expression of SLC7A11 drives sensitivity to TXNRD1 inhibitors in osteoclast precursors[J]. Redox Biol, 2023, 63: 102711. DOI: 10.1016/j.redox.2023.102711. |
[28] | Ju HQ, Lin JF, Tian T, et al. NADPH homeostasis in cancer: functions, mechanisms and therapeutic implications[J]. Signal Transduct Target Ther, 2020, 5(1): 231. DOI: 10.1038/s41392-020-00326-0. |
[29] | Cao X, Wu L, Zhang J, et al. Density functional studies of coenzyme NADPH and its oxidized form NADP+ : Structures, UV-Vis spectra, and the oxidation mechanism of NADPH[J]. J Comput Chem, 2020, 41(4): 305-316. DOI: 10.1002/jcc.26103. |
[30] | Sun XY, Xiao M, Fu M, et al. ALMS1-IT1: a key player in the novel disulfidptosis-related lncRNA prognostic signature for head and neck squamous cell carcinoma[J]. Biomolecules, 2024, 14(3): 266. DOI: 10.3390/biom14030266. |
[31] |
Bleeker FE, Atai NA, Lamba S, et al. The prognostic IDH1R132 mutation is associated with reduced NADP+-dependent IDH activity in glioblastoma[J]. Acta Neuropathol, 2010, 119(4): 487-494. DOI: 10.1007/s00401-010-0645-6.
pmid: 20127344 |
[1] | Zhan Haifeng, Wang Wenxue, Geng Jiawei. Research progress in precise molecular targeted therapy for advanced colorectal cancer [J]. Journal of International Oncology, 2024, 51(9): 601-605. |
[2] | Li Zhiwei, Zhai Chunbao. Research progress on the anti-cancer effect of traditional Chinese medicine polyphenols on colorectal cancer [J]. Journal of International Oncology, 2024, 51(8): 526-531. |
[3] | Zhang Rui, Chu Yanliu. Research progress of colorectal cancer risk assessment models based on FIT and gut microbiota [J]. Journal of International Oncology, 2024, 51(6): 370-375. |
[4] | Gao Fan, Wang Ping, Du Chao, Chu Yanliu. Research progress on intestinal flora and non-surgical treatment of the colorectal cancer [J]. Journal of International Oncology, 2024, 51(6): 376-381. |
[5] | Wang Junyi, Hong Kaibin, Ji Rongjia, Chen Dachao. Effect of cancer nodules on liver metastases after radical resection of colorectal cancer [J]. Journal of International Oncology, 2024, 51(5): 280-285. |
[6] | Sun Guobao, Yang Qian, Zhuang Qingchun, Gao Binbin, Sun Xiaogang, Song Wei, Sha Dan. Research progress on the histopathological growth patterns of colorectal liver metastasis [J]. Journal of International Oncology, 2024, 51(2): 114-118. |
[7] | Liu Debao, Sun Ziwen, Lu Shoutang, Xu Haidong. Expression and clinical significance of ASB6 in colorectal cancer tissues [J]. Journal of International Oncology, 2023, 50(8): 470-474. |
[8] | Chen Zhuo, Tao Jun, Chen Lin, Ke Jing. Value of detection of peripheral blood miR-194 combined with fecal miR-143 in the clinical screening of colorectal cancer [J]. Journal of International Oncology, 2023, 50(5): 268-273. |
[9] | Huang Zhen, Zhang Caiyutian, Ke Shaobo, Shi Wei, Zhao Wensi, Chen Yongshun. Construction of postoperative prognosis model for patients with colorectal cancer [J]. Journal of International Oncology, 2023, 50(3): 157-163. |
[10] | Xu Liangfu, Li Yuanfei. Research progress on tumor microenvironment and immune combination therapy of MSS colorectal cancer [J]. Journal of International Oncology, 2023, 50(3): 186-190. |
[11] | Liu Yujie, Zhao Zhiqiang, Wang Zicheng. Levels and diagnostic value of TOP2A and ERBB2 in peripheral blood mononuclear cells of patients with early colorectal cancer [J]. Journal of International Oncology, 2023, 50(12): 717-722. |
[12] | Tao Hong, Yin Hong, Luo Hong, Tao Jiayu. Potential strategies for targeting tumor-associated macrophages to enhance the efficacy of immune checkpoint inhibitors for colorectal cancer [J]. Journal of International Oncology, 2023, 50(11): 683-687. |
[13] | Wang Xi, Wu Chuanqing. Research progress in reversing multidrug resistance in colorectal cancer [J]. Journal of International Oncology, 2023, 50(1): 42-46. |
[14] | Gao Yizhao, Liu Yang, Liu Qiulong, Xing Jinliang. Application of circulating cell-free nucleic acid in clinical diagnosis and treatment of colorectal cancer [J]. Journal of International Oncology, 2022, 49(9): 555-559. |
[15] | He Zhefeng, Wu Yiyang, Li Zhenjun, Ying Xiaojiang. Predictive value of inflammatory markers in colorectal cancer [J]. Journal of International Oncology, 2022, 49(9): 560-563. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||