Journal of International Oncology ›› 2022, Vol. 49 ›› Issue (9): 555-559.doi: 10.3760/cma.j.cn371439-20220520-00108
• Reviews • Previous Articles Next Articles
Gao Yizhao1, Liu Yang2, Liu Qiulong1, Xing Jinliang1,2()
Received:
2022-05-20
Revised:
2022-06-13
Online:
2022-09-08
Published:
2022-10-21
Contact:
Xing Jinliang
E-mail:xingjinliang@163.com
Supported by:
Gao Yizhao, Liu Yang, Liu Qiulong, Xing Jinliang. Application of circulating cell-free nucleic acid in clinical diagnosis and treatment of colorectal cancer[J]. Journal of International Oncology, 2022, 49(9): 555-559.
[1] |
Zheng R, Zhang S, Zeng H, et al. Cancer incidence and mortality in China, 2016[J]. J Natl Cancer Cent, 2022, 2(1): 1-9. DOI: 10.1016/j.jncc.2022.02.002.
doi: 10.1016/j.jncc.2022.02.002 |
[2] |
Song C, Xu W, Wu H, et al. Photodynamic therapy induces auto-phagy-mediated cell death in human colorectal cancer cells via activation of the ROS/JNK signaling pathway[J]. Cell Death Dis, 2020, 11(10): 938. DOI: 10.1038/s41419-020-03136-y.
doi: 10.1038/s41419-020-03136-y |
[3] |
Kaminski MF, Robertson DJ, Senore C, et al. Optimizing the quality of colorectal cancer screening worldwide[J]. Gastroenterology, 2020, 158(2): 404-417. DOI: 10.1053/j.gastro.2019.11.026.
doi: S0016-5085(19)41582-5 pmid: 31759062 |
[4] |
Zhou H, Zhu L, Song J, et al. Liquid biopsy at the frontier of detection, prognosis and progression monitoring in colorectal cancer[J]. Mol Cancer, 2022, 21(1): 86. DOI: 10.1186/s12943-022-01556-2.
doi: 10.1186/s12943-022-01556-2 pmid: 35337361 |
[5] |
Liu S, Wang J. Current and future perspectives of cell-free DNA in liquid biopsy[J]. Curr Issues Mol Biol, 2022, 44(6): 2695-2709. DOI: 10.3390/cimb44060184.
doi: 10.3390/cimb44060184 pmid: 35735625 |
[6] |
Zandvakili I, Lazaridis KN. Cell-free DNA testing: future applications in gastroenterology and hepatology[J]. Therap Adv Gastroenterol, 2019, 12: 1756284819841896. DOI: 10.1177/1756284819841896.
doi: 10.1177/1756284819841896 |
[7] |
Afrifa J, Zhao T, Yu J. Circulating mitochondria DNA, a non-invasive cancer diagnostic biomarker candidate[J]. Mitochondrion, 2019, 47: 238-243. DOI: 10.1016/j.mito.2018.12.003.
doi: S1567-7249(18)30123-5 pmid: 30562607 |
[8] |
Gammage PA, Frezza C. Mitochondrial DNA: the overlooked oncogenome?[J]. BMC Biol, 2019, 17(1): 53. DOI: 10.1186/s12915-019-0668-y.
doi: 10.1186/s12915-019-0668-y pmid: 31286943 |
[9] |
Kolenda T, Guglas K, Baranowski D, et al. CfRNAs as biomarkers in oncology-still experimental or applied tool for personalized medicine already?[J]. Rep Pract Oncol Radiother, 2020, 25(5): 783-792. DOI: 10.1016/j.rpor.2020.07.007.
doi: 10.1016/j.rpor.2020.07.007 |
[10] |
He Q, Long J, Yin Y, et al. Emerging roles of lncRNAs in the formation and progression of colorectal cancer[J]. Front Oncol, 2020, 9: 1542. DOI: 10.3389/fonc.2019.01542.
doi: 10.3389/fonc.2019.01542 |
[11] |
Duan Q, Cai L, Zheng K, et al. lncRNA KCNQ1OT1 knockdown inhibits colorectal cancer cell proliferation, migration and invasiveness via the PI3K/AKT pathway[J]. Oncol Lett, 2020, 20(1): 601-610. DOI: 10.3892/ol.2020.11619.
doi: 10.3892/ol.2020.11619 pmid: 32565985 |
[12] |
Xu F, Yu S, Han J, et al. Detection of circulating tumor DNA methylation in diagnosis of colorectal cancer[J]. Clin Transl Gastroenterol, 2021, 12(8): e00386. DOI: 10.14309/ctg.0000000000000386.
doi: 10.14309/ctg.0000000000000386 |
[13] |
Sun G, Meng J, Duan H, et al. Diagnostic assessment of septin9 DNA methylation for colorectal cancer using blood detection: a meta-analysis[J]. Pathol Oncol Res, 2019, 25(4): 1525-1534. DOI: 10.1007/s12253-018-0559-5.
doi: 10.1007/s12253-018-0559-5 pmid: 30488278 |
[14] |
Zhao G, Li H, Yang Z, et al. Multiplex methylated DNA testing in plasma with high sensitivity and specificity for colorectal cancer screening[J]. Cancer Med, 2019, 8(12): 5619-5628. DOI: 10.1002/cam4.2475.
doi: 10.1002/cam4.2475 |
[15] |
Cohen JD, Li L, Wang Y, et al. Detection and localization of surgically resectable cancers with a multi-analyte blood test[J]. Science, 2018, 359(6378): 926-930. DOI: 10.1126/science.aar3247.
doi: 10.1126/science.aar3247 pmid: 29348365 |
[16] |
Kozakiewicz P, Grzybowska-Szatkowska L, Ciesielka M, et al. The role of mitochondria in carcinogenesis[J]. Int J Mol Sci, 2021, 22(10): 5100. DOI: 10.3390/ijms22105100.
doi: 10.3390/ijms22105100 |
[17] |
Sundquist K, Sundquist J, Hedelius A, et al. Diagnostic potential of circulating cell-free nuclear and mitochondrial DNA for several cancer types and nonmalignant diseases: a study on suspected cancer patients[J]. Mol Carcinog, 2020, 59(12): 1362-1370. DOI: 10.1002/mc.23261.
doi: 10.1002/mc.23261 |
[18] |
Bao H, Wang Z, Ma X, et al. Letter to the editor: an ultra-sensitive assay using cell-free DNA fragmentomics for multi-cancer early detection[J]. Mol Cancer, 2022, 21(1): 129. DOI: 10.1186/s12943-022-01594-w.
doi: 10.1186/s12943-022-01594-w pmid: 35690859 |
[19] |
Schøler LV, Reinert T, Ørntoft MW, et al. Clinical implications of monitoring circulating tumor DNA in patients with colorectal cancer[J]. Clin Cancer Res, 2017, 23(18): 5437-5445. DOI: 10.1158/1078-0432.CCR-17-0510.
doi: 10.1158/1078-0432.CCR-17-0510 pmid: 28600478 |
[20] |
Chen G, Peng J, Xiao Q, et al. Postoperative circulating tumor DNA as markers of recurrence risk in stages Ⅱ to Ⅲ colorectal cancer[J]. J Hematol Oncol, 2021, 14(1): 80. DOI: 10.1186/s13045-021-01089-z.
doi: 10.1186/s13045-021-01089-z |
[21] |
Knebel FH, Bettoni F, da Fonseca LG, et al. Circulating tumor DNA detection in the management of anti-EGFR therapy for advanced colorectal cancer[J]. Front Oncol, 2019, 9: 170. DOI: 10.3389/fonc.2019.00170.
doi: 10.3389/fonc.2019.00170 pmid: 30967998 |
[22] |
An Q, Hu Y, Li Q, et al. The size of cell-free mitochondrial DNA in blood is inversely correlated with tumor burden in cancer patients[J]. Precis Clin Med, 2019, 2(3): 131-139. DOI: 10.1093/pcmedi/pbz014.
doi: 10.1093/pcmedi/pbz014 |
[23] |
Bousquet PA, Meltzer S, Sønstevold L, et al. Markers of mitochondrial metabolism in tumor hypoxia, systemic inflammation, and adverse outcome of rectal cancer[J]. Transl Oncol, 2019, 12(1): 76-83. DOI: 10.1016/j.tranon.2018.09.010.
doi: S1936-5233(18)30257-2 pmid: 30273860 |
[24] |
Xu Y, Zhou J, Yuan Q, et al. Quantitative detection of circulating MT-ND1 as a potential biomarker for colorectal cancer[J]. Bosn J Basic Med Sci, 2021, 21(5): 577-586. DOI: 10.17305/bjbms.2021.5576.
doi: 10.17305/bjbms.2021.5576 |
[25] |
Di Z, Di M, Fu W, et al. Integrated analysis identifies a nine-microRNA signature biomarker for diagnosis and prognosis in colorectal cancer[J]. Front Genet, 2020, 11: 192. DOI: 10.3389/fgene.2020.00192.
doi: 10.3389/fgene.2020.00192 pmid: 32265979 |
[26] |
Barbagallo C, Brex D, Caponnetto A, et al. LncRNA UCA1, upregulated in CRC biopsies and downregulated in serum exosomes, controls mRNA expression by RNA-RNA interactions[J]. Mol Ther Nucleic Acids, 2018, 12: 229-241. DOI: 10.1016/j.omtn.2018.05.009.
doi: 10.1016/j.omtn.2018.05.009 |
[27] |
Xu W, Zhou G, Wang H, et al. Circulating lncRNA SNHG11 as a novel biomarker for early diagnosis and prognosis of colorectal cancer[J]. Int J Cancer, 2020, 146(10): 2901-2912. DOI: 10.1002/ijc.32747.
doi: 10.1002/ijc.32747 pmid: 31633800 |
[28] |
Li J, Song Y, Wang J, et al. Plasma circular RNA panel acts as a novel diagnostic biomarker for colorectal cancer detection[J]. Am J Transl Res, 2020, 12(11): 7395-7403.
pmid: 33312376 |
[29] |
Pan B, Qin J, Liu X, et al. Identification of serum exosomal hsa-circ-0004771 as a novel diagnostic biomarker of colorectal cancer[J]. Front Genet, 2019, 10: 1096. DOI: 10.3389/fgene.2019.01096.
doi: 10.3389/fgene.2019.01096 pmid: 31737058 |
[30] |
Tsukamoto M, Iinuma H, Yagi T, et al. Circulating exosomal microRNA-21 as a biomarker in each tumor stage of colorectal cancer[J]. Oncology, 2017, 92(6): 360-370. DOI: 10.1159/000463387.
doi: 10.1159/000463387 pmid: 28376502 |
[31] |
Liang ZX, Liu HS, Wang FW, et al. LncRNA RPPH1 promotes colorectal cancer metastasis by interacting with TUBB3 and by promoting exosomes-mediated macrophage M2 polarization[J]. Cell Death Dis, 2019, 10(11): 829. DOI: 10.1038/s41419-019-2077-0.
doi: 10.1038/s41419-019-2077-0 |
[32] |
Oehme F, Krahl S, Gyorffy B, et al. Low level of exosomal long non-coding RNA HOTTIP is a prognostic biomarker in colorectal cancer[J]. RNA Biol, 2019, 16(10): 1339-1345. DOI: 10.1080/15476286.2019.1637697.
doi: 10.1080/15476286.2019.1637697 |
[33] |
Zeng K, Chen X, Xu M, et al. CircHIPK3 promotes colorectal cancer growth and metastasis by sponging miR-7[J]. Cell Death Dis, 2018, 9(4): 417. DOI: 10.1038/s41419-018-0454-8.
doi: 10.1038/s41419-018-0454-8 |
[34] |
Jin G, Liu Y, Zhang J, et al. A panel of serum exosomal microRNAs as predictive markers for chemoresistance in advanced colorectal cancer[J]. Cancer Chemother Pharmacol, 2019, 84(2): 315-325. DOI: 10.1007/s00280-019-03867-6.
doi: 10.1007/s00280-019-03867-6 |
[35] |
Xiao Z, Qu Z, Chen Z, et al. LncRNA HOTAIR is a prognostic biomarker for the proliferation and chemoresistance of colorectal cancer via miR-203a-3p-mediated Wnt/ß-catenin signaling pathway[J]. Cell Physiol Biochem, 2018, 46(3): 1275-1285. DOI: 10.1159/000489110.
doi: 10.1159/000489110 pmid: 29680837 |
[1] | Zhang Rui, Chu Yanliu. Research progress of colorectal cancer risk assessment models based on FIT and gut microbiota [J]. Journal of International Oncology, 2024, 51(6): 370-375. |
[2] | Gao Fan, Wang Ping, Du Chao, Chu Yanliu. Research progress on intestinal flora and non-surgical treatment of the colorectal cancer [J]. Journal of International Oncology, 2024, 51(6): 376-381. |
[3] | Wang Junyi, Hong Kaibin, Ji Rongjia, Chen Dachao. Effect of cancer nodules on liver metastases after radical resection of colorectal cancer [J]. Journal of International Oncology, 2024, 51(5): 280-285. |
[4] | Sun Guobao, Yang Qian, Zhuang Qingchun, Gao Binbin, Sun Xiaogang, Song Wei, Sha Dan. Research progress on the histopathological growth patterns of colorectal liver metastasis [J]. Journal of International Oncology, 2024, 51(2): 114-118. |
[5] | Liu Debao, Sun Ziwen, Lu Shoutang, Xu Haidong. Expression and clinical significance of ASB6 in colorectal cancer tissues [J]. Journal of International Oncology, 2023, 50(8): 470-474. |
[6] | Wang Jun, Jia Xiuhong. TGF-β/Smad signal pathway and acute leukemia [J]. Journal of International Oncology, 2023, 50(8): 498-502. |
[7] | Chen Zhuo, Tao Jun, Chen Lin, Ke Jing. Value of detection of peripheral blood miR-194 combined with fecal miR-143 in the clinical screening of colorectal cancer [J]. Journal of International Oncology, 2023, 50(5): 268-273. |
[8] | Huang Zhen, Zhang Caiyutian, Ke Shaobo, Shi Wei, Zhao Wensi, Chen Yongshun. Construction of postoperative prognosis model for patients with colorectal cancer [J]. Journal of International Oncology, 2023, 50(3): 157-163. |
[9] | Xu Liangfu, Li Yuanfei. Research progress on tumor microenvironment and immune combination therapy of MSS colorectal cancer [J]. Journal of International Oncology, 2023, 50(3): 186-190. |
[10] | Huang Rui, Zhang Yunqing. Clinical efficacy of anlotinib monotherapy in second-line treatment of extensive stage small cell lung cancer with poor PS score [J]. Journal of International Oncology, 2023, 50(12): 705-710. |
[11] | Liu Yujie, Zhao Zhiqiang, Wang Zicheng. Levels and diagnostic value of TOP2A and ERBB2 in peripheral blood mononuclear cells of patients with early colorectal cancer [J]. Journal of International Oncology, 2023, 50(12): 717-722. |
[12] | Tao Hong, Yin Hong, Luo Hong, Tao Jiayu. Potential strategies for targeting tumor-associated macrophages to enhance the efficacy of immune checkpoint inhibitors for colorectal cancer [J]. Journal of International Oncology, 2023, 50(11): 683-687. |
[13] | Wang Xi, Wu Chuanqing. Research progress in reversing multidrug resistance in colorectal cancer [J]. Journal of International Oncology, 2023, 50(1): 42-46. |
[14] | Xu Hangcheng, Wu Yun, Wang Jiayu. Research progress of breast cancer with low HER2 expression [J]. Journal of International Oncology, 2022, 49(9): 513-516. |
[15] | Zhang Lu, Zhou Juying, Ma Chenying, Lin Zhou. Advances in immunotherapy for recurrent and metastatic cervical cancer [J]. Journal of International Oncology, 2022, 49(9): 517-520. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||