Journal of International Oncology ›› 2023, Vol. 50 ›› Issue (8): 498-502.doi: 10.3760/cma.j.cn371439-20230523-00095
• Reviews • Previous Articles Next Articles
Received:
2023-05-23
Revised:
2023-07-01
Online:
2023-08-08
Published:
2023-10-24
Contact:
Jia Xiuhong
E-mail:jiaxiuhong001@163.com
Wang Jun, Jia Xiuhong. TGF-β/Smad signal pathway and acute leukemia[J]. Journal of International Oncology, 2023, 50(8): 498-502.
[1] | Huang CH, Liao YJ, Chiou TJ, et al. TGF-β regulated leukemia cell susceptibility against NK targeting through the down-regulation of the CD48 expression[J]. Immunobiology, 2019, 224(5): 649-658. DOI: 10.1016/j.imbio.2019.07.002. |
[2] |
Wang X, Dong F, Zhang S, et al. TGF-β1 negatively regulates the number and function of hematopoietic stem cells[J]. Stem Cell Reports, 2018, 11(1): 274-287. DOI: 10.1016/j.stemcr.2018.05.017.
pmid: 29937145 |
[3] | David CJ, Massagué J. Contextual determinants of TGFβ action in development, immunity and cancer[J]. Nat Rev Mol Cell Biol, 2018, 19(7): 419-435. DOI: 10.1038/s41580-018-0007-0. |
[4] | Shi Y, Massagué J. Mechanisms of TGF-β signaling from cell membrane to the nucleus[J]. Cell, 2003, 113(6): 685-700. DOI: 10.1016/S0092-8674(03)00432-X. |
[5] | Zhang YE. Non-smad signaling pathways of the TGF-β family[J]. Cold Spring Harb Perspect Biol, 2017, 9(2): a022129. DOI: 10.1101/cshperspect.a022129. |
[6] | Peters C, Meyer A, Kouakanou L, et al. TGF-β enhances the cytotoxic activity of Vδ2 T cells[J]. Oncoimmunology, 2019, 8(1): e1522471. DOI: 10.1080/2162402X.2018.1522471. |
[7] | Beatson RE, Parente-Pereira AC, Halim L, et al. TGF-β1 potentiates Vγ9Vδ2 T cell adoptive immunotherapy of cancer[J]. Cell Rep Med, 2021, 2(12): 100473. DOI: 10.1016/j.xcrm.2021.100473. |
[8] | 陈文婷, 黄莹, 潘艳萍, 等. TGFβ1在急性髓系白血病中的异常表达及其对白血病细胞的调控[J]. 海南医学院学报, 2022, 28(24): 1889-1895, 1903. DOI: 10.13210/j.cnki.jhmu.20221011.001. |
[9] |
El-Asmi F, El-Mchichi B, Maroui MA, et al. TGF-β induces PML SUMOylation, degradation and PML nuclear body disruption[J]. Cytokine, 2019, 120: 264-272. DOI: 10.1016/j.cyto.2019.05.008.
pmid: 31153006 |
[10] | Dahariya S, Raghuwanshi S, Sangeeth A, et al. Megakaryoblastic leukemia: a study on novel role of clinically significant long non-coding RNA signatures in megakaryocyte development during treatment with phorbol ester[J]. Cancer Immunol Immunother, 2021, 70(12): 3477-3488. DOI: 10.1007/s00262-021-02937-0. |
[11] | Liu SX, Xiao HR, Wang GB, et al. Preliminary investigation on the abnormal mechanism of CD4+FOXP3+CD25high regulatory T cells in pediatric B-cell acute lymphoblastic leukemia[J]. Exp Ther Med, 2018, 16(2): 1433-1441. DOI: 10.3892/etm.2018.6326. |
[12] |
El-maadawy EA, Elshal MF, Bakry RM, et al. Regulation of CD4+CD25+FOXP3+ cells in pediatric acute lymphoblastic leukemia (ALL): implication of cytokines and miRNAs[J]. Mol Immunol, 2020, 124: 1-8. DOI: 10.1016/j.molimm.2020.05.002.
pmid: 32480291 |
[13] | Naghavi Alhosseini M, Palazzo M, Cari L, et al. Overexpression of potential markers of regulatory and exhausted CD8+ T cells in the peripheral blood mononuclear cells of patients with B-acute lymphoblastic leukemia[J]. Int J Mol Sci, 2023, 24(5): 4526. DOI: 10.3390/ijms24054526. |
[14] |
Yu H, Huang T, Wang D, et al. Acute lymphoblastic leukemia-derived exosome inhibits cytotoxicity of natural killer cells by TGF-β signaling pathway[J]. 3 Biotech, 2021, 11(7): 313. DOI: 10.1007/s13205-021-02817-5.
pmid: 34109098 |
[15] |
Pan C, Liu P, Ma D, et al. Bone marrow mesenchymal stem cells in microenvironment transform into cancer-associated fibroblasts to promote the progression of B-cell acute lymphoblastic leukemia[J]. Biomed Pharmacother, 2020, 130: 110610. DOI: 10.1016/j.biopha.2020.110610.
pmid: 34321159 |
[16] | Pan C, Fang Q, Liu P, et al. Mesenchymal stem cells with cancer-associated fibroblast-like phenotype stimulate SDF-1/CXCR4 axis to enhance the growth and invasion of B-cell acute lymphoblastic leukemia cells through cell-to-cell communication[J]. Front Cell Dev Biol, 2021, 9: 708513. DOI: 10.3389/fcell.2021.708513. |
[17] |
Portale F, Cricrì G, Bresolin S, et al. ActivinA: a new leukemia-promoting factor conferring migratory advantage to B-cell precursor-acute lymphoblastic leukemic cells[J]. Haematologica, 2019, 104(3): 533-545. DOI: 10.3324/haematol.2018.188664.
pmid: 30262563 |
[18] |
Portale F, Beneforti L, Fallati A, et al. Activin A contributes to the definition of a pro-oncogenic bone marrow microenvironment in t(12;21) preleukemia[J]. Exp Hematol, 2019, 73: 7-12.e4. DOI: 10.1016/j.exphem.2019.02.006.
pmid: 30825516 |
[19] | Yuan B, El Dana F, Ly S, et al. Bone marrow stromal cells induce an ALDH+ stem cell-like phenotype and enhance therapy resistance in AML through a TGF-β-p38-ALDH2 pathway[J]. PLoS One, 2020, 15(11): e0242809. DOI: 10.1371/journal.pone.0242809. |
[20] |
Shingai Y, Yokota T, Okuzaki D, et al. Autonomous TGFβ signaling induces phenotypic variation in human acute myeloid leukemia[J]. Stem Cells, 2021, 39(6): 723-736. DOI: 10.1002/stem.3348.
pmid: 33539590 |
[21] |
Vicioso Y, Gram H, Beck R, et al. Combination therapy for treating advanced drug-resistant acute lymphoblastic leukemia[J]. Cancer Immunol Res, 2019, 7(7): 1106-1119. DOI: 10.1158/2326-6066.CIR-19-0058.
pmid: 31138521 |
[22] | 仲华, 林志强, 薄德映, 等. TGF-β1、GM-CSF及TNF-α对急性髓系白血病患者病情转归的评估[J]. 分子诊断与治疗杂志, 2021, 13(5): 807-810, 815. DOI: 10.19930/j.cnki.jmdt.2021.05.032. |
[23] | 陈文婷, 姚红霞, 吴从明, 等. TGFβ1及VEGF基因在急性髓系白血病患者中的表达水平及其临床预后价值[J]. 中国实验血液学杂志, 2020, 28(1): 130-135. DOI: 10.19746/j.cnki.issn1009-2137.2020.01.022. |
[24] | 雷永兰, 牛敏, 李靖, 等. NLR联合血清β2-MG、TGF-β1对急性髓系白血病的预后分析价值[J]. 临床血液学杂志, 2021, 34(10): 728-731. DOI: 10.13201/j.issn.1004-2806.2021.10.011. |
[25] | 任丽蓉, 官晓红, 练颖, 等. 急性髓系白血病患者血清β2-MG、HGF、TGFβ1表达及临床意义[J]. 标记免疫分析与临床, 2020, 27(3): 488-492. DOI: 10.11748/bjmy.issn.1006-1703.2020.03.029. |
[26] | Zhang J, Zhang L, Cui H, et al. High expression levels of SMAD3 and SMAD7 at diagnosis predict poor prognosis in acute myeloid leukemia patients undergoing chemotherapy[J]. Cancer Gene Ther, 2019, 26(5/6): 119-127. DOI: 10.1038/s41417-018-0044-z. |
[27] |
Bataller A, Montalban-Bravo G, Soltysiak KA, et al. The role of TGFβ in hematopoiesis and myeloid disorders[J]. Leukemia, 2019, 33(5): 1076-1089. DOI: 10.1038/s41375-019-0420-1.
pmid: 30816330 |
[28] | 杨丽媛, 汪路, 唐雨婷, 等. TGF-β信号通路抑制剂LY364947对急性髓系白血病细胞增殖、凋亡和侵袭的影响[J]. 中国细胞生物学学报, 2019, 41(2): 256-264. |
[29] |
Chen J, Mu Q, Li X, et al. Homoharringtonine targets Smad3 and TGF-β pathway to inhibit the proliferation of acute myeloid leukemia cells[J]. Oncotarget, 2017, 8(25): 40318-40326. DOI: 10.18632/oncotarget.16956.
pmid: 28454099 |
[30] | 陈相言, 刘徽, 杨欢. 马钱苷元对白血病HL-60细胞生长及TGF-β1表达的影响[J]. 河北医药, 2022, 44(23): 3549-3553. DOI: 10.3969/j.issn.1002-7386.2022.23.006. |
[31] | 王蕾, 李艳. p27Kip1在As2O3诱导白血病细胞凋亡中的作用机制[J]. 现代肿瘤医学, 2017, 25(21): 3384-3389. DOI: 10.3969/j.issn.1672-4992.2017.21.002. |
[32] | 王晓军, 茹甫毅, 吴双有, 等. 白藜芦醇对K562细胞COX-2、bFGF、TGFβ1及VEGF基因表达的影响[J]. 现代肿瘤医学, 2017, 25(10): 1549-1553. DOI: 10.3969/j.issn.1672-4992.2017.10.009. |
[33] | Bagheri P, Sharifi M, Ghadiri A. Downregulation of MIR100HG induces apoptosis in human megakaryoblastic leukemia cells[J]. Indian J Hematol Blood Transfus, 2021, 37(2): 232-239. DOI: 10.1007/s12288-020-01324-6. |
[34] |
Jiang M, Zou X, Huang W. Ecotropic viral integration site 1 regulates the progression of acute myeloid leukemia via MS4A3-mediated TGFβ/EMT signaling pathway[J]. Oncol Lett, 2018, 16(2): 2701-2708. DOI: 10.3892/ol.2018.8890.
pmid: 30013666 |
[35] | 白琴, 汪嘉莉, 曾莉, 等. hsa-miR-23a-3p靶向TGFβ2对急性淋巴细胞白血病CEM/C1细胞增殖、凋亡、侵袭及细胞骨架重组的影响[J]. 广西医科大学学报, 2021, 38(12): 2265-2271. DOI: 10.16190/j.cnki.45-1211/r.2021.12.011. |
[36] | Erkeland SJ, Stavast CJ, Schilperoord-Vermeulen J, et al. The miR-200c/141-ZEB2-TGFβ axis is aberrant in human T-cell prolymphocytic leukemia[J]. Haematologica, 2022, 107(1): 143-153. DOI: 10.3324/haematol.2020.263756. |
[37] | Xu D, Jiang J, He G, et al. miR-143-3p represses leukemia cell proliferation by inhibiting KAT6A expression[J]. Anticancer Drugs, 2022, 33(1): e662-e669. DOI: 10.1097/CAD.0000000000001231. |
[1] | Wang Kun, Zhou Zhongxin, Zang Qiwei. Predictive value of serum TGF-β1 and VEGF levels in patients with non-small cell lung cancer after single-port thoracoscopic radical resection [J]. Journal of International Oncology, 2024, 51(4): 198-203. |
[2] | Huang Rui, Zhang Yunqing. Clinical efficacy of anlotinib monotherapy in second-line treatment of extensive stage small cell lung cancer with poor PS score [J]. Journal of International Oncology, 2023, 50(12): 705-710. |
[3] | Xu Hangcheng, Wu Yun, Wang Jiayu. Research progress of breast cancer with low HER2 expression [J]. Journal of International Oncology, 2022, 49(9): 513-516. |
[4] | Zhang Lu, Zhou Juying, Ma Chenying, Lin Zhou. Advances in immunotherapy for recurrent and metastatic cervical cancer [J]. Journal of International Oncology, 2022, 49(9): 517-520. |
[5] | Gao Yizhao, Liu Yang, Liu Qiulong, Xing Jinliang. Application of circulating cell-free nucleic acid in clinical diagnosis and treatment of colorectal cancer [J]. Journal of International Oncology, 2022, 49(9): 555-559. |
[6] | Wang Yue, Wu Qiong, Xu Yuan, Gong Wei, Xu Xiaoting. Screening and treatment progression of elderly cervical cancer [J]. Journal of International Oncology, 2022, 49(12): 754-758. |
[7] | Zhou Xinyu, Jia Xiuhong. Research progress of ferroptosis in the treatment of leukemia [J]. Journal of International Oncology, 2022, 49(12): 759-762. |
[8] | Shen Jiaxing, Zhang Shan, Chen Xiangjing, Wang Li, Sun Xiaoyan, Lyu Yanmin, Song Guanhua, Yao Chengfang. TGF-β induces high expression of IL-17D in lung cancer-associated fibroblast and promotes recruitment of MDSC [J]. Journal of International Oncology, 2021, 48(5): 275-281. |
[9] | Zhang Dandan, Yue Hongyun, Zhang Baihong. Adaptive therapy of human cancers: targeting cancer evolution [J]. Journal of International Oncology, 2020, 47(6): 368-371. |
[10] | Yang Lifen, Song Wei, Xu Dawei, Wu Jun, Gao Ran. Mechanisms of miR-103a-3p/CHI3L1 in proliferation and vascular mimicry of ovarian cancer cells [J]. Journal of International Oncology, 2020, 47(6): 333-339. |
[11] | Zhang Baihong, Yue Hongyun. Application of selective CDK4/6 inhibitors in solid cancers therapy [J]. Journal of International Oncology, 2019, 46(6): 350-357. |
[12] |
Mo Qiuping, Chen Yiding, Wang Xiaochen, .
Application of CDK4/6 inhibitors in the treatment of hormone receptorpositive breast cancer [J]. Journal of International Oncology, 2019, 46(10): 617-619. |
[13] | Guo Chongyong, Li Yongmei, Li Bocheng, Zhou Ling, Zhang Jian, Jia Zongshi. Expressions and clinical significances of aldehyde dehydrogenase 1 and transforming growth factor-β2 in triple negative breast cancer [J]. Journal of International Oncology, 2017, 44(11): 801-805. |
[14] | Luo Mengchao, Ding Chaofeng, Wu Jian, Zheng Shusen. Treatment progress of intrahepatic cholangiocarcinoma [J]. Journal of International Oncology, 2016, 43(1): 60-63. |
[15] | Sheng-Neng-Quan-;Yang-Yi-;Wang-Zhi-Gang. 10.3760/cma.j.issn.1673-422X.2015.04.019 [J]. Journal of International Oncology, 2015, 42(4): 309-312. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||