Journal of International Oncology ›› 2023, Vol. 50 ›› Issue (8): 493-497.doi: 10.3760/cma.j.cn371439-20230525-00094
• Reviews • Previous Articles Next Articles
An Rong1, Liu Meihua1, Wang Peichen1, Wang Xiaohui2()
Received:
2023-05-25
Revised:
2023-07-02
Online:
2023-08-08
Published:
2023-10-24
Contact:
Wang Xiaohui
E-mail:xiaohuiwang2015@163.com
Supported by:
An Rong, Liu Meihua, Wang Peichen, Wang Xiaohui. Research progress of Nrf2 in ovarian cancer[J]. Journal of International Oncology, 2023, 50(8): 493-497.
[1] | Xia C, Dong X, Li H, et al. Cancer statistics in China and United States, 2022: profiles, trends, and determinants[J]. Chin Med J (Engl), 2022, 135(5): 584-590. DOI: 10.1097/CM9.0000000000002108. |
[2] | Sun X, Li J, Li Y, et al. Apatinib, a novel tyrosine kinase inhibitor, promotes ROS-dependent apoptosis and autophagy via the Nrf2/HO-1 pathway in ovarian cancer cells[J]. Oxid Med Cell Longev, 2020, 2020: 3145182. DOI: 10.1155/2020/3145182. |
[3] | Ulasov AV, Rosenkranz AA, Georgiev GP, et al. Nrf2/Keap1/ARE signaling: towards specific regulation[J]. Life Sci, 2022, 291: 120111. DOI: 10.1016/j.lfs.2021.120111. |
[4] | Ashrafizadeh M, Ahmadi Z, Samarghandian S, et al. MicroRNA-mediated regulation of Nrf2 signaling pathway: implications in disease therapy and protection against oxidative stress[J]. Life Sci, 2020, 244: 117329. DOI: 10.1016/j.lfs.2020.117329. |
[5] | Yu X, Kensler T. Nrf2 as a target for cancer chemoprevention[J]. Mutat Res, 2005, 591(1/2): 93-102. DOI: 10.1016/j.mrfmmm.2005.04.017. |
[6] |
Sajadimajd S, Khazaei M. Oxidative stress and cancer: the role of Nrf2[J]. Curr Cancer Drug Targets, 2018, 18(6): 538-557. DOI: 10.2174/1568009617666171002144228.
pmid: 28969555 |
[7] | Wang L, Zhang C, Qin L, et al. The prognostic value of NRF2 in solid tumor patients: a meta-analysis[J]. Oncotarget, 2017, 9(1): 1257-1265. DOI: 10.18632/oncotarget.19838. |
[8] | Taguchi K, Yamamoto M. The KEAP1-NRF2 system as a molecular target of cancer treatment[J]. Cancers (Basel), 2020, 13(1): 46. DOI: 10.3390/cancers13010046. |
[9] |
Wilson LA, Gemin A, Espiritu R, et al. ets-1 is transcriptionally up-regulated by H2O2 via an antioxidant response element[J]. FASEB J, 2005, 19(14): 2085-2087. DOI: 10.1096/fj.05-4401fje.
pmid: 16234432 |
[10] | Sun C, Han B, Zhai Y, et al. Dihydrotanshinone Ⅰ inhibits ovarian tumor growth by activating oxidative stress through Keap1-mediated Nrf2 ubiquitination degradation[J]. Free Radic Biol Med, 2022, 180: 220-235. DOI: 10.1016/j.freeradbiomed.2022.01.015. |
[11] |
Wang X, Lu X, Zhu R, et al. Betulinic acid induces apoptosis in differentiated PC12 cells via ROS-mediated mitochondrial pathway[J]. Neurochem Res, 2017, 42(4): 1130-1140. DOI: 10.1007/s11064-016-2147-y.
pmid: 28124213 |
[12] | Alam MB, Naznin M, Islam S, et al. High resolution mass spectroscopy-based secondary metabolite profiling of Nymphaea nouchali (Burm. f) stem attenuates oxidative stress via regulation of MAPK/Nrf2/HO-1/ROS pathway[J]. Antioxidants (Basel), 2021, 10(5): 719. DOI: 10.3390/antiox10050719. |
[13] |
Zhao F, Hong X, Li D, et al. Correction to: diosmetin induces apoptosis in ovarian cancer cells by activating reactive oxygen species and inhibiting the Nrf2 pathway[J]. Med Oncol, 2021, 38(7): 78. DOI: 10.1007/s12032-021-01525-7.
pmid: 34086130 |
[14] | Tossetta G, Fantone S, Montanari E, et al. Role of NRF2 in ovarian cancer[J]. Antioxidants (Basel), 2022, 11(4): 663. DOI: 10.3390/antiox11040663. |
[15] |
Guo G, Gao Z, Tong M, et al. NQO1 is a determinant for cellular sensitivity to anti-tumor agent Napabucasin[J]. Am J Cancer Res, 2020, 10(5): 1442-1454.
pmid: 32509390 |
[16] | Gao Z, Gao X, Fan W, et al. Bisphenol a and genistein have opposite effects on adult chicken ovary by acting on ERα/Nrf2-Keap1-signaling pathway[J]. Chem Biol Interact, 2021, 347: 109616. DOI: 10.1016/j.cbi.2021.109616. |
[17] | Czogalla B, Kahaly M, Mayr D, et al. Interaction of ERα and NRF2 impacts survival in ovarian cancer patients[J]. Int J Mol Sci, 2018, 20(1): 112. DOI: 10.3390/ijms20010112. |
[18] | Konan HP, Kassem L, Omarjee S, et al. ERα-36 regulates progesterone receptor activity in breast cancer[J]. Breast Cancer Res, 2020, 22(1): 50. DOI: 10.1186/s13058-020-01278-7. |
[19] | Tan J, Song C, Wang D, et al. Expression of hormone receptors predicts survival and platinum sensitivity of high-grade serous ovarian cancer[J]. Biosci Rep, 2021, 41(5): BSR20210478. DOI: 10.1042/BSR20210478. |
[20] |
Czogalla B, Kahaly M, Mayr D, et al. Correlation of NRF2 and progesterone receptor and its effects on ovarian cancer biology[J]. Cancer Manag Res, 2019, 11: 7673-7684. DOI: 10.2147/CMAR.S210004.
pmid: 31616183 |
[21] | Tossetta G, Marzioni D. Natural and synthetic compounds in ovarian cancer: a focus on NRF2/KEAP1 pathway[J]. Pharmacol Res, 2022, 183: 106365. DOI: 10.1016/j.phrs.2022.106365. |
[22] | Proshkina E, Plyusnin S, Babak T, et al. Terpenoids as potential geroprotectors[J]. Antioxidants (Basel), 2020, 9(6): 529. DOI: 10.3390/antiox9060529. |
[23] | Ding DN, Xie LZ, Shen Y, et al. Insights into the role of oxidative stress in ovarian cancer[J]. Oxid Med Cell Longev, 2021, 2021: 8388258. DOI: 10.1155/2021/8388258. |
[24] |
Li D, Hong X, Zhao F, et al. Targeting Nrf2 may reverse the drug resistance in ovarian cancer[J]. Cancer Cell Int, 2021, 21(1): 116. DOI: 10.1186/s12935-021-01822-1.
pmid: 33596893 |
[25] | Xia MH, Yan XY, Zhou L, et al. p62 suppressed VK3-induced oxidative damage through Keap1/Nrf2 pathway in human ovarian cancer cells[J]. J Cancer, 2020, 11(6): 1299-1307. DOI: 10.7150/jca.34423. |
[26] | Yan XY, Qu XZ, Xu L, et al. Insight into the role of p62 in the cisplatin resistant mechanisms of ovarian cancer[J]. Cancer Cell Int, 2020, 20: 128. DOI: 10.1186/s12935-020-01196-w. |
[27] | Jena KK, Kolapalli SP, Mehto S, et al. TRIM16 controls assembly and degradation of protein aggregates by modulating the p62-NRF2 axis and autophagy[J]. EMBO J, 2018, 37(18): e98358. DOI: 10.15252/embj.201798358. |
[28] |
Xu P, Jiang L, Yang Y, et al. PAQR4 promotes chemoresistance in non-small cell lung cancer through inhibiting Nrf2 protein degradation[J]. Theranostics, 2020, 10(8): 3767-3778. DOI: 10.7150/thno.43142.
pmid: 32206121 |
[29] | Mirzaei S, Mohammadi AT, Gholami MH, et al. Nrf2 signaling pathway in cisplatin chemotherapy: potential involvement in organ protection and chemoresistance[J]. Pharmacol Res, 2021, 167: 105575. DOI: 10.1016/j.phrs.2021.105575. |
[30] |
Badmann S, Mayr D, Schmoeckel E, et al. AKR1C1/2 inhibition by MPA sensitizes platinum resistant ovarian cancer towards carboplatin[J]. Sci Rep, 2022, 12(1): 1862. DOI: 10.1038/s41598-022-05785-9.
pmid: 35115586 |
[31] |
Liu J, Xia X, Huang P. xCT: a critical molecule that links cancer metabolism to redox signaling[J]. Mol Ther, 2020, 28(11): 2358-2366. DOI: 10.1016/j.ymthe.2020.08.021.
pmid: 32931751 |
[32] | Pizzagalli MD, Bensimon A, Superti-Furga G. A guide to plasma membrane solute carrier proteins[J]. FEBS J, 2021, 288(9): 2784-2835. DOI: 10.1111/febs.15531. |
[33] |
Sirota R, Gibson D, Kohen R. The timing of caffeic acid treatment with cisplatin determines sensitization or resistance of ovarian carcinoma cell lines[J]. Redox Biol, 2017, 11: 170-175. DOI: 10.1016/j.redox.2016.12.006.
pmid: 27951496 |
[34] |
Huang W, Chen L, Zhu K, et al. Oncogenic microRNA-181d binding to OGT contributes to resistance of ovarian cancer cells to cisplatin[J]. Cell Death Discov, 2021, 7(1): 379. DOI: 10.1038/s41420-021-00715-6.
pmid: 34876558 |
[35] | Deng X, Lin N, Fu J, et al. The Nrf2/PGC1 α pathway regulates antioxidant and proteasomal activity to alter cisplatin sensitivity in ovarian cancer[J]. Oxid Med Cell Longev, 2020, 2020: 4830418. DOI: 10.1155/2020/4830418. |
[36] | Wu M, Ma L, Xue L, et al. Resveratrol alleviates chemotherapy-induced oogonial stem cell apoptosis and ovarian aging in mice[J]. Aging (Albany NY), 2019, 11(3): 1030-1044. DOI: 10.18632/aging.101808. |
[37] | Chen Q, Xu Z, Li X, et al. Epigallocatechin gallate and theaflavins independently alleviate cyclophosphamide-induced ovarian damage by inhibiting the overactivation of primordial follicles and follicular atresia[J]. Phytomedicine, 2021, 92: 153752. DOI: 10.1016/j.phymed.2021.153752. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||