Journal of International Oncology ›› 2023, Vol. 50 ›› Issue (4): 220-226.doi: 10.3760/cma.j.cn371439-20221214-00043
• Original Articles • Previous Articles Next Articles
Received:
2022-12-14
Revised:
2023-03-13
Online:
2023-04-08
Published:
2023-06-12
Contact:
Wang Yufeng, Email: Yang Lirong, Wang Yufeng. Construction of machine learning models for predicting the risk of postoperative distant metastasis recurrence in serous ovarian cancer[J]. Journal of International Oncology, 2023, 50(4): 220-226.
"
变量 | 远处转移组 (n=105) | 非远处转移 组(n=582) | t/χ2/Z值 | P值 |
---|---|---|---|---|
年龄 | 51.9±9.8 | 50.8±9.2 | 1.04 | 0.298 |
FIGO分期 | ||||
Ⅰ期 | 5(4.8) | 89(15.3) | ||
Ⅱ期 | 6(5.7) | 74(12.7) | -3.81 | <0.001 |
Ⅲ期 | 94(89.5) | 419(72.0) | ||
围手术期化疗周期 | 7.15±1.97 | 5.69±2.80 | -5.11 | <0.001 |
术前CA125(U/ml) | 2.68±0.73 | 2.61±0.69 | -0.83 | 0.422 |
术后残余病灶 直径(cm) | ||||
<1 | 80(76.2) | 484(83.2) | 2.94 | 0.086 |
≥1 | 25(23.8) | 98(16.8) | ||
淋巴结转移 | ||||
无 | 67(63.8) | 438(75.3) | 5.98 | 0.014 |
有 | 38(36.2) | 144(24.7) | ||
腹腔积液细胞学 | ||||
无 | 33(31.4) | 250(43.0) | ||
非典型细胞 | 9(8.6) | 47(8.0) | -2.22 | 0.026 |
肿瘤细胞 | 63(61.0) | 285(49.0) | ||
NACT | ||||
否 | 57(54.3) | 384(66.0) | 5.29 | 0.021 |
是 | 48(45.7) | 198(34.0) |
"
变量 | β值 | SE值 | OR值 | 95%CI | P值 |
---|---|---|---|---|---|
FIGO分期 | |||||
Ⅰ期 | - | - | - | - | |
Ⅱ期 | 0.436 | 0.187 | 1.54 | 1.07~2.22 | 0.019 |
Ⅲ期 | 0.692 | 0.517 | 1.99 | 0.72~5.50 | 0.181 |
围手术期化疗周期 | 0.200 | 0.056 | 1.22 | 0.09~0.36 | <0.001 |
术后残余病灶直径 | 0.156 | 0.268 | 1.16 | 0.69~1.97 | 0.561 |
腹腔积液细胞学 | 1.20 | 0.71~1.89 | 0.180 | ||
无 | |||||
非典型细胞 | 0.149 | 0.422 | 1.16 | 0.50~2.65 | 0.725 |
肿瘤细胞 | 0.148 | 0.249 | 1.16 | 0.71~1.89 | 0.552 |
NACT | -0.027 | 0.248 | 0.97 | 0.59~1.58 | 0.915 |
淋巴结转移 | 0.216 | 0.246 | 1.24 | 0.74~1.99 | 0.370 |
[1] |
中国抗癌协会妇科肿瘤专业委员会. 卵巢恶性肿瘤诊断与治疗指南(2021年版)[J]. 中国癌症杂志, 2021, 31(6): 490-500. DOI: 10.19401/j.cnki.1007-3639.2021.06.07.
doi: 10.19401/j.cnki.1007-3639.2021.06.07 |
[2] |
Deng K, Yang C, Tan Q, et al. Sites of distant metastases and overall survival in ovarian cancer: a study of 1481 patients[J]. Gynecol Oncol, 2018, 150(3): 460-465. DOI: 10.1016/j.ygyno.2018.06.022.
doi: S0090-8258(18)31004-7 pmid: 30001833 |
[3] |
Kim SI, Song M, Hwangbo S, et al. Development of web-based nomograms to predict treatment response and prognosis of epithelial ovarian cancer[J]. Cancer Res Treat, 2019, 51(3): 1144-1155. DOI: 10.4143/crt.2018.508.
doi: 10.4143/crt.2018.508 pmid: 30453728 |
[4] |
Hwangbo S, Kim SI, Kim JH, et al. Development of machine learning models to predict platinum sensitivity of high-grade serous ovarian carcinoma[J]. Cancers (Basel), 2021, 13(8): 1875. DOI: 10.3390/cancers13081875.
doi: 10.3390/cancers13081875 |
[5] |
Hou GM, Jiang C, Du JP, et al. Nomogram models for predicting risk and prognosis of newly diagnosed ovarian cancer patients with liver metastases—a large population-based real-world study[J]. J Cancer, 2021, 12(24): 7255-7265. DOI: 10.7150/jca.64255.
doi: 10.7150/jca.64255 |
[6] |
Wang S, Liu Z, Rong Y, et al. Deep learning provides a new computed tomography-based prognostic biomarker for recurrence prediction in high-grade serous ovarian cancer[J]. Radiother Oncol, 2019, 132: 171-177. DOI: 10.1016/j.radonc.2018.10.019.
doi: S0167-8140(18)33543-6 pmid: 30392780 |
[7] |
Zhou J, Li L, Wang L, et al. Establishment of a SVM classifier to predict recurrence of ovarian cancer[J]. Mol Med Rep, 2018, 18(4): 3589-3598. DOI: 10.3892/mmr.2018.9362.
doi: 10.3892/mmr.2018.9362 pmid: 30106117 |
[8] |
Rustin GJ, Vergote I, Eisenhauer E, et al. Definitions for response and progression in ovarian cancer clinical trials incorporating RECIST 1.1 and CA 125 agreed by the Gynecological Cancer Intergroup (GCIG)[J]. Int J Gynecol Cancer, 2011, 21(2): 419-423. DOI: 10.1097/IGC.0b013e3182070f17.
doi: 10.1097/IGC.0b013e3182070f17 pmid: 21270624 |
[9] |
Tokunaga H, Shimada M, Ishikawa M, et al. TNM classification of gynaecological malignant tumours, eighth edition: changes between the seventh and eighth editions[J]. Jpn J Clin Oncol, 2019, 49(4): 311-320. DOI: 10.1093/jjco/hyy206.
doi: 10.1093/jjco/hyy206 pmid: 30668753 |
[10] |
Zamanipoor Najafabadi AH, Ramspek CL, Dekker FW, et al. TRIPOD statement: a preliminary pre-post analysis of reporting and methods of prediction models[J]. BMJ Open, 2020, 10(9): e041537. DOI: 10.1136/bmjopen-2020-041537.
doi: 10.1136/bmjopen-2020-041537 |
[11] |
Zhang C, Guo X, Peltzer K, et al. The prevalence, associated factors for bone metastases development and prognosis in newly diagnosed ovarian cancer: a large population based real-world study[J]. J Cancer, 2019, 10(14): 3133-3139. DOI: 10.7150/jca.30335.
doi: 10.7150/jca.30335 pmid: 31289583 |
[12] |
贺贵福, 宋炳胜, 赵义, 等. CEA、CA125升高水平与PET/CT显像评估卵巢癌治疗后复发及转移的价值[J]. 中国老年学杂志, 2015, 35(6): 1494-1496. DOI: 10.3969/j.issn.1005-9202.2015.06.027.
doi: 10.3969/j.issn.1005-9202.2015.06.027 |
[13] |
Akazawa M, Hashimoto K. Artificial intelligence in ovarian cancer diagnosis[J]. Anticancer Res, 2020, 40(8): 4795-4800. DOI: 10.21873/anticanres.14482.
doi: 10.21873/anticanres.14482 pmid: 32727807 |
[14] |
Gould MK, Huang BZ, Tammemagi MC, et al. Machine learning for early lung cancer identification using routine clinical and laboratory data[J]. Am J Respir Crit Care Med, 2021, 204(4): 445-453. DOI: 10.1164/rccm.202007-2791OC.
doi: 10.1164/rccm.202007-2791OC |
[15] |
Mackay HJ, Brady MF, Oza AM, et al. Prognostic relevance of uncommon ovarian histology in women with stage Ⅲ/Ⅳ epithelial ovarian cancer[J]. Int J Gynecol Cancer, 2010, 20(6): 945-952. DOI: 10.1111/IGC.0b013e3181dd0110.
doi: 10.1111/IGC.0b013e3181dd0110 pmid: 20683400 |
[16] |
Kawakami E, Tabata J, Yanaihara N, et al. Application of artificial intelligence for preoperative diagnostic and prognostic prediction in epithelial ovarian cancer based on blood biomarkers[J]. Clin Cancer Res, 2019, 25(10): 3006-3015. DOI: 10.1158/1078-0432.CCR-18-3378..
doi: 10.1158/1078-0432.CCR-18-3378 pmid: 30979733 |
[17] |
Paik ES, Lee JW, Park JY, et al. Prediction of survival outcomes in patients with epithelial ovarian cancer using machine learning methods[J]. J Gynecol Oncol, 2019, 30(4): e65. DOI: 10.3802/jgo.2019.30.e65.
doi: 10.3802/jgo.2019.30.e65 |
[18] |
Hu J, Jiao X, Zhu L, et al. Establishment and verification of the nomogram that predicts the 3-year recurrence risk of epithelial ovarian carcinoma[J]. BMC Cancer, 2020, 20(1): 938. DOI: 10.1186/s12885-020-07402-2.
doi: 10.1186/s12885-020-07402-2 pmid: 32993522 |
[19] |
Ma J, Yang J, Jin Y, et al. Artificial intelligence based on blood biomarkers including CTCs predicts outcomes in epithelial ovarian cancer: a prospective study[J]. Onco Targets Ther, 2021, 14: 3267-3280. DOI: 10.2147/OTT.S307546.
doi: 10.2147/OTT.S307546 |
[20] |
谭金城. 上皮性卵巢癌术后复发转移预测模型的建立及验证[D]. 昆明: 昆明医科大学, 2022. DOI: 10.27202/d.cnki.gkmyc.2022.000731.
doi: 10.27202/d.cnki.gkmyc.2022.000731 |
[21] |
O'Shea AS. Clinical staging of ovarian cancer[J]. Methods Mol Biol, 2022, 2424: 3-10. DOI: 10.1007/978-1-0716-1956-8_1.
doi: 10.1007/978-1-0716-1956-8_1 pmid: 34918284 |
[22] |
杨莎, 杨晓华, 王苏华, 等. 老年肺癌胸腔镜手术后下肢深静脉血栓的危险因素分析及预测模型的建立和验证[J]. 国际肿瘤学杂志, 2022, 49(9): 532-536. DOI: 10.3760/cma.j.cn371439-20220621-00103.
doi: 10.3760/cma.j.cn371439-20220621-00103 |
[23] |
Shipe ME, Deppen SA, Farjah F, et al. Developing prediction models for clinical use using logistic regression: an overview[J]. J Thorac Dis, 2019, 11(Suppl 4): S574-S584. DOI: 10.21037/jtd.2019.01.25.
doi: 10.21037/jtd.2019.01.25 |
[1] | Chen Hongjian, Zhang Suqing. Study on the relationship between serum miR-24-3p, H2AFX and clinical pathological features and postoperative recurrence in liver cancer patients [J]. Journal of International Oncology, 2024, 51(6): 344-349. |
[2] | Wang Ying, Liu Nan, Guo Bing. Advances of antibody-drug conjugate in the therapy of metastatic breast cancer [J]. Journal of International Oncology, 2024, 51(6): 364-369. |
[3] | Liu Jing, Liu Qin, Huang Mei. Prognostic model construction of lung infection in patients with chemoradiotherapy for esophageal cancer based on SMOTE algorithm [J]. Journal of International Oncology, 2024, 51(5): 267-273. |
[4] | Fu Yi, Ma Chenying, Zhang Lu, Zhou Juying. Research progress of habitat analysis in radiomics of malignant tumors [J]. Journal of International Oncology, 2024, 51(5): 292-297. |
[5] | Chen Qi, Xu Chenyang, Wang Yin, Lei Dapeng. Current application status of hyperspectral imaging in the diagnosis and treatment of head and neck tumor [J]. Journal of International Oncology, 2024, 51(5): 298-302. |
[6] | Liu Pingping, He Xuefang, Zhang Yi, Yang Xu, Zhang Shanshan, Ji Yifei. Risk factors of postoperative recurrence in patients with primary brain glioma and prediction model construction [J]. Journal of International Oncology, 2024, 51(4): 193-197. |
[7] | Li Shuyue, Ma Chenying, Zhou Juying, Xu Xiaoting, Qin Songbing. Progress of radiotherapy in oligometastatic non-small cell lung cancer [J]. Journal of International Oncology, 2024, 51(3): 170-174. |
[8] | Gong Yan, Chen Honglei. Research progress on the mechanism of microRNA regulation of cisplatin resistance in ovarian cancer [J]. Journal of International Oncology, 2024, 51(3): 186-190. |
[9] | Sun Guobao, Yang Qian, Zhuang Qingchun, Gao Binbin, Sun Xiaogang, Song Wei, Sha Dan. Research progress on the histopathological growth patterns of colorectal liver metastasis [J]. Journal of International Oncology, 2024, 51(2): 114-118. |
[10] | Zhao Xin, Fan Xuewu, Tian Long, Hu Yimin. Application and evaluation study of 3D ultrasound in image guided radiotherapy for prostate cancer [J]. Journal of International Oncology, 2024, 51(1): 43-49. |
[11] | Deng Juanjun, Zhao Dayong, Li Miao. Adverse reactions and risk factors of immune checkpoint inhibitors in the treatment of non-small cell lung cancer [J]. Journal of International Oncology, 2023, 50(9): 564-568. |
[12] | Zhang Lu, Jiang Hua, Lin Zhou, Ma Chenying, Xu Xiaoting, Wang Lili, Zhou Juying. Analysis of curative effect and prognosis of immune checkpoint inhibitor in the treatment of recurrent and metastatic cervical cancer [J]. Journal of International Oncology, 2023, 50(8): 475-483. |
[13] | An Rong, Liu Meihua, Wang Peichen, Wang Xiaohui. Research progress of Nrf2 in ovarian cancer [J]. Journal of International Oncology, 2023, 50(8): 493-497. |
[14] | Li Chenxi, Zhao Hongwei. Prognosis and influencing factors of platinum sensitive recurrent ovarian cancer treated by secondary cytoreduction surgery in patients with unsatisfactory primary cytoreduction surgery [J]. Journal of International Oncology, 2023, 50(6): 342-347. |
[15] | Chen Fengyang, Zhang Wei. Application of machine learning in liver disease: improving diagnosis, treatment, and efficacy evaluation [J]. Journal of International Oncology, 2023, 50(5): 310-314. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||