Journal of International Oncology ›› 2023, Vol. 50 ›› Issue (4): 227-230.doi: 10.3760/cma.j.cn371439-20230105-00044
• Reviews • Previous Articles Next Articles
Xu Meng, Jiang Wei, Zhu Haitao, Cao Xiongfeng()
Received:
2023-01-05
Revised:
2023-03-10
Online:
2023-04-08
Published:
2023-06-12
Contact:
Cao Xiongfeng, Email: Supported by:
Xu Meng, Jiang Wei, Zhu Haitao, Cao Xiongfeng. Research progress of cancer-associated fibroblasts in tumor radiotherapy resistance[J]. Journal of International Oncology, 2023, 50(4): 227-230.
[1] |
沈建军. 鼻咽癌放疗后局部复发的治疗[J]. 国际肿瘤学杂志, 2020, 47(4): 227-230. DOI: 10.3760/cma.j.cn371439-20190926-00007.
doi: 10.3760/cma.j.cn371439-20190926-00007 |
[2] |
Krisnawan VE, Stanley JA, Schwarz JK, et al. Tumor microenvironment as a regulator of radiation therapy: new insights into stromal-mediated radioresistance[J]. Cancers (Basel), 2020, 12(10): 2916. DOI: 10.3390/cancers12102916.
doi: 10.3390/cancers12102916 |
[3] |
Sahai E, Astsaturov I, Cukierman E, et al. A framework for advan-cing our understanding of cancer-associated fibroblasts[J]. Nat Rev Cancer, 2020, 20(3): 174-186. DOI: 10.1038/s41568-019-0238-1.
doi: 10.1038/s41568-019-0238-1 pmid: 31980749 |
[4] |
Kanzaki R, Pietras K. Heterogeneity of cancer-associated fibroblasts: opportunities for precision medicine[J]. Cancer Sci, 2020, 111(8): 2708-2717. DOI: 10.1111/cas.14537.
doi: 10.1111/cas.14537 |
[5] |
Hu B, Wu C, Mao H, et al. Subpopulations of cancer-associated fibroblasts link the prognosis and metabolic features of pancreatic ductal adenocarcinoma[J]. Ann Transl Med, 2022, 10(5): 262. DOI: 10.21037/atm-22-407.
doi: 10.21037/atm-22-407 pmid: 35402584 |
[6] |
Menezes S, Okail MH, Jalil SMA, et al. Cancer-associated fibroblasts in pancreatic cancer: new subtypes, new markers, new targets[J]. J Pathol, 2022, 257(4): 526-544. DOI: 10.1002/path.5926.
doi: 10.1002/path.5926 |
[7] |
Elyada E, Bolisetty M, Laise P, et al. Cross-species single-cell analysis of pancreatic ductal adenocarcinoma reveals antigen-presenting cancer-associated fibroblasts[J]. Cancer Discov, 2019, 9(8): 1102-1123. DOI: 10.1158/2159-8290.CD-19-0094.
doi: 10.1158/2159-8290.CD-19-0094 pmid: 31197017 |
[8] |
Wang Z, Tang Y, Tan Y, et al. Cancer-associated fibroblasts in radiotherapy: challenges and new opportunities[J]. Cell Commun Signal, 2019, 17(1): 47. DOI: 10.1186/s12964-019-0362-2.
doi: 10.1186/s12964-019-0362-2 pmid: 31101063 |
[9] |
Domogauer JD, de Toledo SM, Howell RW, et al. Acquired radioresistance in cancer associated fibroblasts is concomitant with enhanced antioxidant potential and DNA repair capacity[J]. Cell Commun Signal, 2021, 19(1): 30. DOI: 10.1186/s12964-021-00711-4.
doi: 10.1186/s12964-021-00711-4 pmid: 33637118 |
[10] |
Tommelein J, De Vlieghere E, Verset L, et al. Radiotherapy-activated cancer-associated fibroblasts promote tumor progression through paracrine IGF1R activation[J]. Cancer Res, 2018, 78(3): 659-670. DOI: 10.1158/0008-5472.CAN-17-0524.
doi: 10.1158/0008-5472.CAN-17-0524 pmid: 29217764 |
[11] |
Liu Y, Wu Y, Yang M, et al. Ionizing radiation-induced "zombie" carcinoma-associated fibroblasts with suppressed pro-radioresistance on OSCC cells[J]. Oral Dis, 2023, 29(2): 563-573. DOI: 10.1111/odi.13979.
doi: 10.1111/odi.13979 |
[12] |
Meng J, Li Y, Wan C, et al. Targeting senescence-like fibroblasts radiosensitizes non-small cell lung cancer and reduces radiation-induced pulmonary fibrosis[J]. JCI Insight, 2021, 6(23): e146334. DOI: 10.1172/jci.insight.146334.
doi: 10.1172/jci.insight.146334 |
[13] |
Nicolas AM, Pesic M, Engel E, et al. Inflammatory fibroblasts mediate resistance to neoadjuvant therapy in rectal cancer[J]. Cancer Cell, 2022, 40(2): 168-184.e13. DOI: 10.1016/j.ccell.2022.01.004.
doi: 10.1016/j.ccell.2022.01.004 pmid: 35120600 |
[14] |
Pereira PMR, Edwards KJ, Mandleywala K, et al. iNOS regulates the therapeutic response of pancreatic cancer cells to radiotherapy[J]. Cancer Res, 2020, 80(8): 1681-1692. DOI: 10.1158/0008-5472.CAN-19-2991.
doi: 10.1158/0008-5472.CAN-19-2991 pmid: 32086240 |
[15] |
Carlos-Reyes A, Muñiz-Lino MA, Romero-Garcia S, et al. Biological adaptations of tumor cells to radiation therapy[J]. Front Oncol, 2021, 11: 718636. DOI: 10.3389/fonc.2021.718636.
doi: 10.3389/fonc.2021.718636 |
[16] |
Kozłowska-Masłoń J, Guglas K, Paszkowska A, et al. Radio-lncRNAs: biological function and potential use as biomarkers for personalized oncology[J]. J Pers Med, 2022, 12(10): 1605. DOI: 10.3390/jpm12101605.
doi: 10.3390/jpm12101605 |
[17] |
Huang W, Zhang L, Yang M, et al. Cancer-associated fibroblasts promote the survival of irradiated nasopharyngeal carcinoma cells via the NF-κB pathway[J]. J Exp Clin Cancer Res, 2021, 40(1): 87. DOI: 10.1186/s13046-021-01878-x.
doi: 10.1186/s13046-021-01878-x |
[18] |
Chen X, Liu Y, Zhang Q, et al. Exosomal miR-590-3p derived from cancer-associated fibroblasts confers radioresistance in colorectal cancer[J]. Mol Ther Nucleic Acids, 2021, 24: 113-126. DOI: 10.1016/j.omtn.2020.11.003.
doi: 10.1016/j.omtn.2020.11.003 |
[19] |
Pastushenko I, Blanpain C. EMT transition states during tumor progression and metastasis[J]. Trends Cell Biol, 2019, 29(3): 212-226. DOI: 10.1016/j.tcb.2018.12.001.
doi: S0962-8924(18)30201-0 pmid: 30594349 |
[20] |
Lambin T, Lafon C, Drainville RA, et al. Locoregional therapies and their effects on the tumoral microenvironment of pancreatic ductal adenocarcinoma[J]. World J Gastroenterol, 2022, 28(13): 1288-1303. DOI: 10.3748/wjg.v28.i13.1288.
doi: 10.3748/wjg.v28.i13.1288 |
[21] |
Nandi A, Debnath R, Nayak A, et al. Dll1-mediated notch signaling drives tumor cell cross-talk with cancer-associated fibroblasts to promote radioresistance in breast cancer[J]. Cancer Res, 2022, 82(20): 3718-3733. DOI: 10.1158/0008-5472.CAN-21-1225.
doi: 10.1158/0008-5472.CAN-21-1225 |
[22] |
Yamauchi N, Kanke Y, Saito K, et al. Stromal expression of cancer-associated fibroblast-related molecules, versican and lumican, is strongly associated with worse relapse-free and overall survival times in patients with esophageal squamous cell carcinoma[J]. Oncol Lett, 2021, 21(6): 445. DOI: 10.3892/ol.2021.12706.
doi: 10.3892/ol.2021.12706 pmid: 33868483 |
[23] |
Steele NG, Biffi G, Kemp SB, et al. Inhibition of hedgehog signaling alters fibroblast composition in pancreatic cancer[J]. Clin Cancer Res, 2021, 27(7): 2023-2037. DOI: 10.1158/1078-0432.CCR-20-3715.
doi: 10.1158/1078-0432.CCR-20-3715 pmid: 33495315 |
[24] |
Li J, Peng L, Chen Q, et al. Integrin β1 in pancreatic cancer: expressions, functions, and clinical implications[J]. Cancers (Basel), 2022, 14(14): 3377. DOI: 10.3390/cancers14143377.
doi: 10.3390/cancers14143377 |
[25] |
Cordes N, Ney M, Beleites T, et al. Retrospective investigation of the prognostic value of the β1 integrin expression in patients with head and neck squamous cell carcinoma receiving primary radio(chemo)therapy[J]. PLoS One, 2018, 13(12): e0209479. DOI: 10.1371/journal.pone.0209479.
doi: 10.1371/journal.pone.0209479 |
[26] |
Vehlow A, Klapproth E, Jin S, et al. Interaction of discoidin domain receptor 1 with a 14-3-3-Beclin-1-Akt1 complex modulates glioblastoma therapy sensitivity[J]. Cell Rep, 2019, 26(13): 3672-3683.e7. DOI: 10.1016/j.celrep.2019.02.096.
doi: S2211-1247(19)30282-7 pmid: 30917320 |
[27] |
Zhou W, Yu X, Sun S, et al. Increased expression of MMP-2 and MMP-9 indicates poor prognosis in glioma recurrence[J]. Biomed Pharmacother, 2019, 118: 109369. DOI: 10.1016/j.biopha.2019.109369.
doi: 10.1016/j.biopha.2019.109369 |
[28] |
Sheng Y, Zhang B, Xing B, et al. Cancer-associated fibroblasts exposed to high-dose ionizing radiation promote M2 polarization of macrophages, which induce radiosensitivity in cervical cancer[J]. Cancers (Basel), 2023, 15(5): 1620. DOI: 10.3390/cancers15051620.
doi: 10.3390/cancers15051620 |
[29] |
Yang N, Lode K, Berzaghi R, et al. Irradiated tumor fibroblasts avoid immune recognition and retain immunosuppressive functions over natural killer cells[J]. Front Immunol, 2021, 11: 602530. DOI: 10.3389/fimmu.2020.602530.
doi: 10.3389/fimmu.2020.602530 |
[30] |
Berzaghi R, Tornaas S, Lode K, et al. Ionizing radiation curtails immunosuppressive effects from cancer-associated fibroblasts on dendritic cells[J]. Front Immunol, 2021, 12: 662594. DOI: 10./fimmu.2021.662594.
doi: 10./fimmu.2021.662594 |
[31] |
Li F, Zhao S, Wei C, et al. Development of Nectin4/FAP-targeted CAR-T cells secreting IL-7, CCL19, and IL-12 for malignant solid tumors[J]. Front Immunol, 2022, 13: 958082. DOI: 10.3389/fimmu.2022.958082.
doi: 10.3389/fimmu.2022.958082 |
[32] |
Labiano S, Roh V, Godfroid C, et al. CD40 agonist targeted to fibroblast activation protein α synergizes with radiotherapy in murine HPV-positive head and neck tumors[J]. Clin Cancer Res, 2021, 27(14): 4054-4065. DOI: 10.1158/1078-0432.CCR-20-4717.
doi: 10.1158/1078-0432.CCR-20-4717 pmid: 33903200 |
[33] |
Han X, Li Y, Xu Y, et al. Reversal of pancreatic desmoplasia by re-educating stellate cells with a tumour microenvironment-activated nanosystem[J]. Nat Commun, 2018, 9(1): 3390. DOI: 10.1038/s41467-018-05906-x.
doi: 10.1038/s41467-018-05906-x pmid: 30139933 |
[34] |
Eckert MA, Coscia F, Chryplewicz A, et al. Proteomics reveals NNMT as a master metabolic regulator of cancer-associated fibroblasts[J]. Nature, 2019, 569(7758): 723-728. DOI: 10.1038/s41586-019-1173-8.
doi: 10.1038/s41586-019-1173-8 |
[35] |
Wang J, Xu Z, Wang Z, et al. TGF-beta signaling in cancer radiotherapy[J]. Cytokine, 2021, 148: 155709. DOI: 10.1016/j.cyto.2021.155709.
doi: 10.1016/j.cyto.2021.155709 |
[36] |
Mohapatra D, Das B, Suresh V, et al. Fluvastatin sensitizes pancreatic cancer cells toward radiation therapy and suppresses radiation- and/or TGF-β-induced tumor-associated fibrosis[J]. Lab Invest, 2022, 102(3): 298-311. DOI: 10.1038/s41374-021-00690-7.
doi: 10.1038/s41374-021-00690-7 |
[37] |
Liu CS, Rioja I, Bakr A, et al. Selective inhibitors of bromodomain BD1 and BD2 of BET proteins modulate radiation-induced profibrotic fibroblast responses[J]. Int J Cancer, 2022, 151(2): 275-286. DOI: 10.1002/ijc.33989.
doi: 10.1002/ijc.33989 |
[1] | Liu Na, Kou Jieli, Yang Feng, Liu Taotao, Li Danping, Han Junrui, Yang Lizhou. Clinical value of serum miR-106b-5p and miR-760 combined with low-dose spiral CT in the diagnosis of early lung cancer [J]. Journal of International Oncology, 2024, 51(6): 321-325. |
[2] | Qian Xiaotao, Shi Ziyi, Hu Ge, Wu Xiaowei. Efficacy of consolidation chemotherapy after radical radiotherapy and chemotherapy for stage Ⅲ-ⅣA esophageal squamous cell carcinoma: a real-world clinical study [J]. Journal of International Oncology, 2024, 51(6): 326-331. |
[3] | Yang Mi, Bie Jun, Zhang Jiayong, Deng Jiaxiu, Tang Zuge, Lu Jun. Analysis of the efficacy and prognosis of neoadjuvant therapy for locally advanced resectable esophageal cancer [J]. Journal of International Oncology, 2024, 51(6): 332-337. |
[4] | Yuan Jian, Huang Yanhua. Diagnostic value of Hp-IgG antibody combined with serum DKK1 and sB7-H3 in early gastric cancer [J]. Journal of International Oncology, 2024, 51(6): 338-343. |
[5] | Chen Hongjian, Zhang Suqing. Study on the relationship between serum miR-24-3p, H2AFX and clinical pathological features and postoperative recurrence in liver cancer patients [J]. Journal of International Oncology, 2024, 51(6): 344-349. |
[6] | Guo Zehao, Zhang Junwang. Role of PFDN and its subunits in tumorigenesis and tumor development [J]. Journal of International Oncology, 2024, 51(6): 350-353. |
[7] | Zhang Baihong, Yue Hongyun. Advances in anti-tumor drugs with new mechanisms of action [J]. Journal of International Oncology, 2024, 51(6): 354-358. |
[8] | Xu Fenglin, Wu Gang. Research progress of EBV in tumor immune microenvironment and immunotherapy of nasopharyngeal carcinoma [J]. Journal of International Oncology, 2024, 51(6): 359-363. |
[9] | Wang Ying, Liu Nan, Guo Bing. Advances of antibody-drug conjugate in the therapy of metastatic breast cancer [J]. Journal of International Oncology, 2024, 51(6): 364-369. |
[10] | Zhang Rui, Chu Yanliu. Research progress of colorectal cancer risk assessment models based on FIT and gut microbiota [J]. Journal of International Oncology, 2024, 51(6): 370-375. |
[11] | Gao Fan, Wang Ping, Du Chao, Chu Yanliu. Research progress on intestinal flora and non-surgical treatment of the colorectal cancer [J]. Journal of International Oncology, 2024, 51(6): 376-381. |
[12] | Liu Jing, Liu Qin, Huang Mei. Prognostic model construction of lung infection in patients with chemoradiotherapy for esophageal cancer based on SMOTE algorithm [J]. Journal of International Oncology, 2024, 51(5): 267-273. |
[13] | Yang Lin, Lu Ning, Wen Hua, Zhang Mingxin, Zhu Lin. Study on the clinical relationship between inflammatory burden index and gastric cancer [J]. Journal of International Oncology, 2024, 51(5): 274-279. |
[14] | Wang Junyi, Hong Kaibin, Ji Rongjia, Chen Dachao. Effect of cancer nodules on liver metastases after radical resection of colorectal cancer [J]. Journal of International Oncology, 2024, 51(5): 280-285. |
[15] | Zhang Ningning, Yang Zhe, Tan Limei, Li Zhenning, Wang Di, Wei Yongzhi. Diagnostic value of cervical cell DNA ploidy analysis combined with B7-H4 and PKCδ for cervical cancer [J]. Journal of International Oncology, 2024, 51(5): 286-291. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||