Journal of International Oncology ›› 2022, Vol. 49 ›› Issue (12): 759-762.doi: 10.3760/cma.j.cn371439-20220816-00149
• Reviews • Previous Articles Next Articles
Received:
2022-06-23
Revised:
2022-07-31
Online:
2022-12-08
Published:
2023-01-05
Contact:
Jia Xiuhong
E-mail:jiaxiuhong001@163.com
Supported by:
Zhou Xinyu, Jia Xiuhong. Research progress of ferroptosis in the treatment of leukemia[J]. Journal of International Oncology, 2022, 49(12): 759-762.
[1] |
Wang F, Lv H, Zhao B, et al. Iron and leukemia: new insights for future treatments[J]. J Exp Clin Cancer Res, 2019, 38(1): 406. DOI: 10.1186/s13046-019-1397-3.
doi: 10.1186/s13046-019-1397-3 |
[2] |
Weber S, Parmon A, Kurrle N, et al. The clinical significance of iron overload and iron metabolism in myelodysplastic syndrome and acute myeloid leukemia[J]. Front Immunol, 2020, 11: 627662. DOI: 10.3389/fimmu.2020.627662.
doi: 10.3389/fimmu.2020.627662 |
[3] |
Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149(5): 1060-1072. DOI: 10.1016/j.cell.2012.03.042.
doi: 10.1016/j.cell.2012.03.042 pmid: 22632970 |
[4] |
Doll S, Conrad M. Iron and ferroptosis: a still ill-defined liaison[J]. IUBMB Life, 2017, 69(6): 423-434. DOI: 10.1002/iub.1616.
doi: 10.1002/iub.1616 pmid: 28276141 |
[5] |
Xie Y, Hou W, Song X, et al. Ferroptosis: process and function[J]. Cell Death Differ, 2016, 23(3): 369-379. DOI: 10.1038/cdd.2015.158.
doi: 10.1038/cdd.2015.158 pmid: 26794443 |
[6] |
Wei J, Nai GY, Dai Y, et al. Dipetidyl peptidase-4 and transferrin receptor serve as prognostic biomarkers for acute myeloid leukemia[J]. Ann Transl Med, 2021, 9(17): 1381. DOI: 10.21037/atm-21-3368.
doi: 10.21037/atm-21-3368 pmid: 34733933 |
[7] | Ye F, Chai W, Xie M, et al. HMGB1 regulates erastin-induced ferroptosis via RAS-JNK/p38 signaling in HL-60/NRASQ61L cells[J]. Am J Cancer Res, 2019, 9(4): 730-739. |
[8] |
Huang X, Zhou D, Ye X, et al. A novel ferroptosis-related gene signature can predict prognosis and influence immune microenviron-ment in acute myeloid leukemia[J]. Bosn J Basic Med Sci, 2022, 22(4): 608-628. DOI: 10.17305/bjbms.2021.6274.
doi: 10.17305/bjbms.2021.6274 |
[9] |
Zhou F, Chen B. Prognostic significance of ferroptosis-related genes and their methylation in AML[J]. Hematology, 2021, 26(1): 919-930. DOI: 10.1080/16078454.2021.1996055.
doi: 10.1080/16078454.2021.1996055 pmid: 34789073 |
[10] |
Liu S, Wu W, Chen Q, et al. TXNRD1: a key regulator involved in the ferroptosis of CML cells induced by cysteine depletion in vitro[J]. Oxid Med Cell Longev, 2021, 2021: 7674565. DOI: 10.1155/2021/7674565.
doi: 10.1155/2021/7674565 |
[11] |
陶圆. BACH2在急性髓系白血病中的表达及作用机制研究[D]. 沈阳: 中国医科大学, 2021. DOI: 10.27652/d.cnki.gzyku.2021.000116.
doi: 10.27652/d.cnki.gzyku.2021.000116 |
[12] |
Wang Z, Chen X, Liu N, et al. A nuclear long non-coding RNA LINC00618 accelerates ferroptosis in a manner dependent upon apoptosis[J]. Mol Ther, 2021, 29(1): 263-274. DOI: 10.1016/j.ymthe.2020.09.024.
doi: 10.1016/j.ymthe.2020.09.024 pmid: 33002417 |
[13] |
Wei J, Xie Q, Liu X, et al. Identification the prognostic value of glutathione peroxidases expression levels in acute myeloid leukemia[J]. Ann Transl Med, 2020, 8(11): 678. DOI: 10.21037/atm-20-3296.
doi: 10.21037/atm-20-3296 pmid: 32617298 |
[14] |
Dong LH, Huang JJ, Zu P, et al. CircKDM4C upregulates P53 by sponging hsa-let-7b-5p to induce ferroptosis in acute myeloid leukemia[J]. Environ Toxicol, 2021, 36(7): 1288-1302. DOI: 10.1002/tox.23126.
doi: 10.1002/tox.23126 |
[15] |
Jin L, Tong L. PAQR3 inhibits proliferation and aggravates ferrop-tosis in acute lymphoblastic leukemia through modulation Nrf2 stability[J]. Immun Inflamm Dis, 2021, 9(3): 827-839. DOI: 10.1002/iid3.437.
doi: 10.1002/iid3.437 |
[16] |
宁涛. UVRAG参与K562白血病细胞铁死亡过程[D]. 衡阳: 南华大学, 2020. DOI: 10.27234/d.cnki.gnhuu.2020.000975.
doi: 10.27234/d.cnki.gnhuu.2020.000975 |
[17] |
朱婷, 范洋. 自噬通过影响铁稳态调节急性淋巴细胞白血病细胞对铁死亡激活剂的敏感性[J]. 中国实验血液学杂志, 2021, 29(5): 1380-1386. DOI: 10.19746/j.cnki.issn1009-2137.2021.05.003.
doi: 10.19746/j.cnki.issn1009-2137.2021.05.003 |
[18] |
Zhang X, Zhang X, Liu K, et al. HIVEP3 cooperates with ferrop-tosis gene signatures to confer adverse prognosis in acute myeloid leukemia[J/OL]. Cancer Med. [2022-05-10]. https://pubmed.ncbi.nlm.nih.gov/35535739/. DOI: 10.1002/cam4.4806.
doi: 10.1002/cam4.4806 |
[19] |
Yang X, Li Y, Zhang Y, et al. Circ_0000745 promotes acute lym-phoblastic leukemia progression through mediating miR-494-3p/NET1 axis[J]. Hematology, 2022, 27(1): 11-22. DOI: 10.1080/16078454.2021.2008590.
doi: 10.1080/16078454.2021.2008590 pmid: 34957935 |
[20] |
程霖, 金鑫, 卢文艺, 等. RSL3诱导急性白血病细胞株MOLM13及其耐药细胞株发生铁死亡的作用及相关机制研究[J]. 中国实验血液学杂志, 2021, 29(4): 1109-1118. DOI: 10.19746/j.cnki.issn1009-2137.2021.04.014.
doi: 10.19746/j.cnki.issn1009-2137.2021.04.014 |
[21] |
Sagasser J, Ma BN, Baecker D, et al. A new approach in cancer treatment: discovery of chloride [N, N'-disalicylidene-1,2-phenylenediamine] iron (Ⅲ) complexes as ferroptosis inducers[J]. J Med Chem, 2019, 62(17): 8053-8061. DOI: 10.1021/acs.jmedchem.9b00814.
doi: 10.1021/acs.jmedchem.9b00814 pmid: 31369259 |
[22] |
Zhu HY, Huang ZX, Chen GQ, et al. Typhaneoside prevents acute myeloid leukemia (AML) through suppressing proliferation and inducing ferroptosis associated with autophagy[J]. Biochem Biophys Res Commun, 2019, 516(4): 1265-1271. DOI: 10.1016/j.bbrc.2019.06.070.
doi: 10.1016/j.bbrc.2019.06.070 |
[23] |
Mbaveng AT, Chi GF, Bonsou IN, et al. N-acetylglycoside of oleanolic acid (aridanin) displays promising cytotoxicity towards human and animal cancer cells, inducing apoptotic, ferroptotic and necroptotic cell death[J]. Phytomedicine, 2020, 76: 153261. DOI: 10.1016/j.phymed.2020.153261.
doi: 10.1016/j.phymed.2020.153261 |
[24] |
Mbaveng AT, Ndontsa BL, Kuete V, et al. A naturally occuring triterpene saponin ardisiacrispin B displayed cytotoxic effects in multi-factorial drug resistant cancer cells via ferroptotic and apoptotic cell death[J]. Phytomedicine, 2018, 43: 78-85. DOI: 10.1016/j.phymed.2018.03.035.
doi: S0944-7113(18)30070-9 pmid: 29747757 |
[25] |
Mbaveng AT, Noulala CGT, Samba ARM, et al. The alkaloid, soyauxinium chloride, displays remarkable cytotoxic effects towards a panel of cancer cells, inducing apoptosis, ferroptosis and necroptosis[J]. Chem Biol Interact, 2021, 333: 109334. DOI: 10.1016/j.cbi.2020.109334.
doi: 10.1016/j.cbi.2020.109334 |
[26] |
Du J, Wang T, Li Y, et al. DHA inhibits proliferation and induces ferroptosis of leukemia cells through autophagy dependent degradation of ferritin[J]. Free Radic Biol Med, 2019, 131: 356-369. DOI: 10.1016/j.freeradbiomed.2018.12.011.
doi: 10.1016/j.freeradbiomed.2018.12.011 |
[27] |
Luo T, Gao J, Lin N, et al. Effects of two kinds of iron nanopar-ticles as reactive oxygen species inducer and scavenger on the transcriptomic profiles of two human leukemia cells with different stemness[J]. Nanomaterials (Basel), 2020, 10(10): 1951. DOI: 10.3390/nano10101951.
doi: 10.3390/nano10101951 |
[28] |
Yusuf RZ, Saez B, Sharda A, et al. Aldehyde dehydrogenase 3a2 protects AML cells from oxidative death and the synthetic lethality of ferroptosis inducers[J]. Blood, 2020, 136(11): 1303-1316. DOI: 10.1182/blood.2019001808.
doi: 10.1182/blood.2019001808 pmid: 32458004 |
[29] |
Pardieu B, Pasanisi J, Ling F, et al. Cystine uptake inhibition poten-tiates front-line therapies in acute myeloid leukemia[J]. Leukemia, 2022, 36(6): 1585-1595. DOI: 10.1038/s41375-022-01573-6.
doi: 10.1038/s41375-022-01573-6 |
[30] |
Greco G, Schnekenburger M, Catanzaro E, et al. Discovery of sulforaphane as an inducer of ferroptosis in U-937 leukemia cells: expanding its anticancer potential[J]. Cancers (Basel), 2021, 14(1): 76. DOI: 10.3390/cancers14010076.
doi: 10.3390/cancers14010076 |
[31] |
Birsen R, Larrue C, Decroocq J, et al. APR-246 induces early cell death by ferroptosis in acute myeloid leukemia[J]. Haema-tologica, 2022, 107(2): 403-416. DOI: 10.3324/haematol.2020. 259531.
doi: 10.3324/haematol.2020. 259531 |
[32] |
Cao K, Du Y, Bao X, et al. Glutathione-bioimprinted nanoparticles targeting of N6-methyladenosine FTO demethylase as a strategy against leukemic stem cells[J]. Small, 2022, 18(13): e2106558. DOI: 10.1002/smll.202106558.
doi: 10.1002/smll.202106558 |
[33] |
Li Q, Su R, Bao X, et al. Glycyrrhetinic acid nanoparticles com-bined with ferrotherapy for improved cancer immunotherapy[J]. Acta Biomater, 2022, 144: 109-120. DOI: 10.1016/j.actbio.2022.03.030.
doi: 10.1016/j.actbio.2022.03.030 |
[34] |
Lou S, Hong H, Maihesuti L, et al. Inhibitory effect of hydnocarpin D on T-cell acute lymphoblastic leukemia via induction of autophagy-dependent ferroptosis[J]. Exp Biol Med (Maywood), 2021, 246(13): 1541-1553. DOI: 10.1177/15353702211004870.
doi: 10.1177/15353702211004870 |
[35] |
Du Y, Bao J, Zhang MJ, et al. Targeting ferroptosis contributes to ATPR-induced AML differentiation via ROS-autophagy-lysosomal pathway[J]. Gene, 2020, 755: 144889. DOI: 10.1016/j.gene.2020.144889.
doi: 10.1016/j.gene.2020.144889 |
[1] | Wang Peixin, Zhao Jun, Xu Shihong, Jiang Zhaoyang, Wang Xiaoqiang, Yang Hongjuan. Progress of ferroptosis-related mechanisms in osteosarcoma [J]. Journal of International Oncology, 2024, 51(5): 308-311. |
[2] | Wang Zihao, Wang Yu, Yang Xin, He Yi, Mo Xingkui, Yuan Tao. Research progress on the molecular mechanism and related treatments of ferroptosis in osteosarcoma [J]. Journal of International Oncology, 2024, 51(4): 239-244. |
[3] | Teng Yuan, Li Lijuan, Zhang Liansheng. Progress of MCL-1 and its inhibitors in hematologic malignancies [J]. Journal of International Oncology, 2024, 51(2): 119-122. |
[4] | Wang Jun, Jia Xiuhong. TGF-β/Smad signal pathway and acute leukemia [J]. Journal of International Oncology, 2023, 50(8): 498-502. |
[5] | Wang Ting, Li Wenqian, Xie Youbang. Correlation between hypoxia and the oxygen sensing pathway in acute myeloid leukemia cells [J]. Journal of International Oncology, 2023, 50(8): 503-507. |
[6] | Huang Rui, Zhang Yunqing. Clinical efficacy of anlotinib monotherapy in second-line treatment of extensive stage small cell lung cancer with poor PS score [J]. Journal of International Oncology, 2023, 50(12): 705-710. |
[7] | Zhang Ting, Jia Xiuhong. Research progress of pyroptosis in leukemia [J]. Journal of International Oncology, 2023, 50(11): 696-700. |
[8] | Xu Hangcheng, Wu Yun, Wang Jiayu. Research progress of breast cancer with low HER2 expression [J]. Journal of International Oncology, 2022, 49(9): 513-516. |
[9] | Zhang Lu, Zhou Juying, Ma Chenying, Lin Zhou. Advances in immunotherapy for recurrent and metastatic cervical cancer [J]. Journal of International Oncology, 2022, 49(9): 517-520. |
[10] | Gao Yizhao, Liu Yang, Liu Qiulong, Xing Jinliang. Application of circulating cell-free nucleic acid in clinical diagnosis and treatment of colorectal cancer [J]. Journal of International Oncology, 2022, 49(9): 555-559. |
[11] | Lu Jialing, Huang Huijuan, Liu Dan, Chen Yanxin, Ma Xiao, Wu Depei. Efficacy and safety of blinatumomab in the treatment of B-cell acute lymphoblastic leukemia [J]. Journal of International Oncology, 2022, 49(8): 494-498. |
[12] | Zeng Yan, Luo Pan, Wang Ziqi, Wu Weili. Mechanism of drug induced ferroptosis in the treatment of head and neck tumors [J]. Journal of International Oncology, 2022, 49(3): 173-176. |
[13] | Wang Yue, Wu Qiong, Xu Yuan, Gong Wei, Xu Xiaoting. Screening and treatment progression of elderly cervical cancer [J]. Journal of International Oncology, 2022, 49(12): 754-758. |
[14] | Chen Xi, Mu Dan, Yan Qin, Liu Wenjun. Bone marrow microenvironment and differentiation of leukemia cells [J]. Journal of International Oncology, 2021, 48(3): 189-192. |
[15] | Li Weiqiang, Wu Yang, Wan Chonghua, Tan Jianfeng, He Zhengchun, Meng Qiong. Establishing minimal clinically important differences of Quality of Life Instruments for Cancer Patients-Leukemia based on the distribution-based approach [J]. Journal of International Oncology, 2021, 48(10): 577-582. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||