Journal of International Oncology ›› 2023, Vol. 50 ›› Issue (8): 503-507.doi: 10.3760/cma.j.cn371439-20230605-00096
• Reviews • Previous Articles Next Articles
Wang Ting1, Li Wenqian2(), Xie Youbang2
Received:
2023-06-05
Revised:
2023-07-18
Online:
2023-08-08
Published:
2023-10-24
Contact:
Li Wenqian
E-mail:lwq121616@163.com
Supported by:
Wang Ting, Li Wenqian, Xie Youbang. Correlation between hypoxia and the oxygen sensing pathway in acute myeloid leukemia cells[J]. Journal of International Oncology, 2023, 50(8): 503-507.
[1] | Yi M, Li A, Zhou L, et al. The global burden and attributable risk factor analysis of acute myeloid leukemia in 195 countries and territories from 1990 to 2017: estimates based on the global burden of disease study 2017[J]. J Hematol Oncol, 2020, 13(1): 72. DOI:10.1186/s13045-020-00908-z. |
[2] | Kim HS, Ha HS, Kim DH, et al. O2 variant chip to simulate site-specific skeletogenesis from hypoxic bone marrow[J]. Sci Adv, 2023, 9(12): eadd4210. DOI:10.1126/sciadv.add4210. |
[3] | Kessler T, Koschmieder S, Schliemann C, et al. Phase Ⅱ clinical trial of pazopanib in patients with acute myeloid leukemia (AML), relapsed or refractory or at initial diagnosis without an intensive treatment option (PazoAML)[J]. Ann Hematol, 2019, 98(6): 1393-1401. DOI:10.1007/s00277-019-03651-9. |
[4] | Christodoulou C, Spencer JA, Yeh SA, et al. Live-animal imaging of native haematopoietic stem and progenitor cells[J]. Nature, 2020, 578(7794): 278-283. DOI:10.1038/s41586-020-1971-z. |
[5] |
Yao Y, Li F, Huang J, et al. Leukemia stem cell-bone marrow microenvironment interplay in acute myeloid leukemia development[J]. Exp Hematol Oncol, 2021, 10(1): 39. DOI:10.1186/s40164-021-00233-2.
pmid: 34246314 |
[6] | Drolle H, Wagner M, Vasold J, et al. Hypoxia regulates proliferation of acute myeloid leukemia and sensitivity against chemotherapy[J]. Leuk Res, 2015, 39(7): 779-785. DOI:10.1016/j.leukres.2015.04.019. |
[7] | Li Y, Zhao L, Li XF. The hypoxia-activated prodrug TH-302: exploiting hypoxia in cancer therapy[J]. Front Pharmacol, 2021, 12: 636892. DOI:10.3389/fphar.2021.636892. |
[8] | 李凡, 何海萍, 张丽华, 等. 骨髓增生异常综合征患者来源间充质干细胞的最新研究进展[J]. 中国实验血液学杂志, 2022, 30(4): 1286-1290. DOI:10.19746/j.cnki.issn1009-2137.2022.04.051. |
[9] |
Deynoux M, Sunter N, Hérault O, et al. Hypoxia and hypoxia-inducible factors in leukemias[J]. Front Oncol, 2016, 6: 41. DOI:10.3389/fonc.2016.00041.
pmid: 26955619 |
[10] | 陈曦, 母丹, 严钦, 等. 骨髓微环境与白血病细胞分化[J]. 国际肿瘤学杂志, 2021, 48(3): 189-192. DOI:10.3760/cma.j.cn371439-20200619-00038. |
[11] | Ruan Y, Kim HN, Ogana H, et al. Wnt signaling in leukemia and its bone marrow microenvironment[J]. Int J Mol Sci, 2020, 21(17): 6247. DOI:10.3390/ijms21176247. |
[12] | Gruszka AM, Valli D, Alcalay M. Wnt signalling in acute myeloid leukaemia[J]. Cells, 2019, 8(11): 1403. DOI:10.3390/cells8111403. |
[13] | Bruno S, Mancini M, De Santis S, et al. The role of hypoxic bone marrow microenvironment in acute myeloid leukemia and future therapeutic opportunities[J]. Int J Mol Sci, 2021, 22(13): 6857. DOI:10.3390/ijms22136857. |
[14] |
Jiang M, He G, Wang J, et al. Hypoxia induces inflammatory microenvironment by priming specific macrophage polarization and modifies LSC behaviour via VEGF-HIF1α signalling[J]. Transl Pediatr, 2021, 10(7): 1792-1804. DOI:10.21037/tp-21-86.
pmid: 34430427 |
[15] | Kim JW, Tchernyshyov I, Semenza GL, et al. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia[J]. Cell Metab, 2006, 3(3): 177-185. DOI:10.1016/j.cmet.2006.02.002. |
[16] |
Morganti C, Cabezas-Wallscheid N, Ito K. Metabolic regulation of hematopoietic stem cells[J]. Hemasphere, 2022, 6(7): e740. DOI:10.1097/HS9.0000000000000740.
pmid: 35785147 |
[17] |
He P, Lei J, Zou LX, et al. Effects of hypoxia on DNA hydroxymethylase Tet methylcytosine dioxygenase 2 in a KG-1 human acute myeloid leukemia cell line and its mechanism[J]. Oncol Lett, 2021, 22(4): 692. DOI:10.3892/ol.2021.12953.
pmid: 34457047 |
[18] |
Abdul-Aziz AM, Shafat MS, Sun Y, et al. HIF1α drives chemokine factor pro-tumoral signaling pathways in acute myeloid leukemia[J]. Oncogene, 2018, 37(20): 2676-2686. DOI:10.1038/s41388-018-0151-1.
pmid: 29487418 |
[19] |
Abdul-Aziz AM, Shafat MS, Mehta TK, et al. MIF-induced stromal PKCβ/IL8 is essential in human acute myeloid leukemia[J]. Cancer Res, 2017, 77(2): 303-311. DOI:10.1158/0008-5472.CAN-16-1095.
pmid: 27872094 |
[20] | Jabari M, Allahbakhshian Farsani M, Salari S, et al. Hypoxia-inducible factor1-Α (HIF1α) and vascular endothelial growth factor-A (VEGF-A) expression in De Novo AML patients[J]. Asian Pac J Cancer Prev, 2019, 20(3): 705-710. DOI:10.31557/APJCP.2019.20.3.705. |
[21] |
Choudhry H, Harris AL. Advances in hypoxia-inducible factor biology[J]. Cell Metab, 2018, 27(2): 281-298. DOI:10.1016/j.cmet.2017.10.005.
pmid: 29129785 |
[22] | Magliulo D, Bernardi R. HIF-α factors as potential therapeutic targets in leukemia[J]. Expert Opin Ther Targets, 2018, 22(11): 917-928. DOI:10.1080/14728222.2018.1538357. |
[23] |
Nair R, Salinas-Illarena A, Baldauf HM. New strategies to treat AML: novel insights into AML survival pathways and combination therapies[J]. Leukemia, 2021, 35(2): 299-311. DOI:10.1038/s41375-020-01069-1.
pmid: 33122849 |
[24] | Du W, Lu C, Zhu X, et al. Prognostic significance of CXCR4 expression in acute myeloid leukemia[J]. Cancer Med, 2019, 8(15): 6595-6603. DOI:10.1002/cam4.2535. |
[25] | Ladikou EE, Chevassut T, Pepper CJ, et al. Dissecting the role of the CXCL12/CXCR4 axis in acute myeloid leukaemia[J]. Br J Haematol, 2020, 189(5): 815-825. DOI:10.1111/bjh.16456. |
[26] | Vitale C, Griggio V, Riganti C, et al. Targeting HIF-1α regulatory pathways as a strategy to hamper tumor-microenvironment interactions in CLL[J]. Cancers (Basel), 2021, 13(12): 2883. DOI:10.3390/cancers13122883. |
[27] | Cheng Y, Ma XL, Wei YQ, et al. Potential roles and targeted therapy of the CXCLs/CXCR2 axis in cancer and inflammatory diseases[J]. Biochim Biophys Acta Rev Cancer, 2019, 1871(2): 289-312. DOI:10.1016/j.bbcan.2019.01.005. |
[28] |
Cheng H, Huang C, Xu X, et al. PIM-1 mRNA expression is a potential prognostic biomarker in acute myeloid leukemia[J]. J Transl Med, 2017, 15(1): 179. DOI:10.1186/s12967-017-1287-4.
pmid: 28851457 |
[29] |
Li L, Zhao L, Man J, et al. CXCL2 benefits acute myeloid leukemia cells in hypoxia[J]. Int J Lab Hematol, 2021, 43(5): 1085-1092. DOI:10.1111/ijlh.13512.
pmid: 33793061 |
[1] | Wang Ying, Liu Nan, Guo Bing. Advances of antibody-drug conjugate in the therapy of metastatic breast cancer [J]. Journal of International Oncology, 2024, 51(6): 364-369. |
[2] | Wang Peixin, Zhao Jun, Xu Shihong, Jiang Zhaoyang, Wang Xiaoqiang, Yang Hongjuan. Progress of ferroptosis-related mechanisms in osteosarcoma [J]. Journal of International Oncology, 2024, 51(5): 308-311. |
[3] | Yang Zhi, Lu Yiqiao, Gu Huayan, Ding Jialing, Guo Guilong. Research progress of tumor microenvironment mediated drug resistance in targeted therapy of breast cancer [J]. Journal of International Oncology, 2024, 51(4): 235-238. |
[4] | Huang Hui, Ding Jianghua. Advances in targeting FGFR2 for treatment of advanced cholangiocarcinoma [J]. Journal of International Oncology, 2023, 50(9): 569-573. |
[5] | Li Qingshan, Xie Xin, Zhang Nan, Liu Shuai. Research progress on the application of combining radiotherapy and systemic therapy in breast cancer [J]. Journal of International Oncology, 2023, 50(6): 362-367. |
[6] | Liu Li, Zhu Siqi, Sun Mengying, He Jingdong. Progress of PARP inhibitors in targeted therapy of small cell lung cancer [J]. Journal of International Oncology, 2023, 50(6): 368-372. |
[7] | Liu Bohan, Huang Junxing. Research progress of solute carriers related genes in malignant tumors [J]. Journal of International Oncology, 2023, 50(5): 280-284. |
[8] | Zhu Jun, Huang Meijin, Li Yuan, Liu Zegang, Xun Xin, Chen Hong. Research progress on targeted therapy of breast cancer with low expression of HER2 [J]. Journal of International Oncology, 2023, 50(4): 236-240. |
[9] | Deng Lili, Duan Xingyu, Li Baozhong. Advances of anti-HER2 targeted drugs and combined therapeutic regimens for gastric and esophagogastic adenocarcinoma [J]. Journal of International Oncology, 2023, 50(12): 751-757. |
[10] | Liu Shaoping, Luo Hanchuan, Lin Shuhan, Luo Jiahui. Current status and research progress of interventional and systemic therapy for advanced hepatocellular carcinoma [J]. Journal of International Oncology, 2023, 50(12): 758-762. |
[11] | Jiang Shan, Xu Ximing. Recent progresses of targeted therapy and immunotherapy of hepatocellular carcinoma [J]. Journal of International Oncology, 2023, 50(11): 688-695. |
[12] | Jiang Shan, Xu Yangtao, Liu Xin, Chen Wenliang, Xu Ximing. Predictive value of baseline peripheral blood inflammatory biomarkers for prognosis in patients with advanced hepatocellular carcinoma treated with immunotherapy combined with targeted therapy [J]. Journal of International Oncology, 2023, 50(10): 600-607. |
[13] | Zhang Jingxian, Su Jianfei, Wei Xueqin, Yi Dan, Li Xiaojiang. Treatment status of non-small cell lung cancer with METexon14 skipping mutation [J]. Journal of International Oncology, 2023, 50(1): 37-41. |
[14] | Song Jia, Hu Qinyong. Application of TACE combined with molecular targeted therapy and immunotherapy in BCLC B/C hepatocellular carcinoma [J]. Journal of International Oncology, 2022, 49(9): 550-554. |
[15] | Dai Lichen, Hu Lijun, Yu Jingping. Advances of nimotuzumab in the treatment of esophageal squamous cell carcinoma [J]. Journal of International Oncology, 2022, 49(8): 484-489. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||