Journal of International Oncology ›› 2023, Vol. 50 ›› Issue (5): 280-284.doi: 10.3760/cma.j.cn371439-20230305-00056
• Reviews • Previous Articles Next Articles
Liu Bohan1,2, Huang Junxing1,2()
Received:
2023-03-05
Revised:
2023-04-08
Online:
2023-05-08
Published:
2023-06-27
Contact:
Huang Junxing
E-mail:hjxtz@sina.cn
Supported by:
Liu Bohan, Huang Junxing. Research progress of solute carriers related genes in malignant tumors[J]. Journal of International Oncology, 2023, 50(5): 280-284.
[1] |
Fairweather SJ, Shah N, Bröer S. Heteromeric solute carriers: function, structure, pathology and pharmacology[J]. Adv Exp Med Biol, 2021, 21: 13-127. DOI: 10.1007/5584_2020_584.
doi: 10.1007/5584_2020_584 pmid: 33052588 |
[2] |
汤志全, 石丽, 熊晶. 溶质载体SLC家族在非酒精性脂肪性肝病中的研究进展[J]. 遗传, 2022, 44(10): 881-898. DOI: 10.16288/j.yczz.22-238.
doi: 10.16288/j.yczz.22-238 |
[3] |
Lu X. The role of large neutral amino acid transporter (LAT1) in cancer[J]. Curr Cancer Drug Targets, 2019, 19(11): 863-876. DOI: 10.2174/1568009619666190802135714.
doi: 10.2174/1568009619666190802135714 pmid: 31376820 |
[4] |
Pizzagalli MD, Bensimon A, Superti-Furga G. A guide to plasma membrane solute carrier proteins[J]. FEBS J, 2021, 288(9): 2784-2835. DOI: 10.1111/febs.15531.
doi: 10.1111/febs.15531 |
[5] |
Scalise M, Scanga R, Console L, et al. Chemical approaches for studying the biology and pharmacology of membrane transporters: the histidine/large amino acid transporter SLC7A5 as a benchmark[J]. Molecules, 2021, 26(21): 6562. DOI: 10.3390/molecules26216562.
doi: 10.3390/molecules26216562 |
[6] |
Kanai Y. Amino acid transporter LAT1 (SLC7A5) as a molecular target for cancer diagnosis and therapeutics[J]. Pharmacol Ther, 2022, 230: 107964. DOI: 10.1016/j.pharmthera.2021.107964.
doi: 10.1016/j.pharmthera.2021.107964 |
[7] |
Liu Y, Ma G, Liu J, et al. SLC7A5 is a lung adenocarcinoma-specific prognostic biomarker and participates in forming immunosuppressive tumor microenvironment[J]. Heliyon, 2022, 8(10): e10866. DOI: 10.1016/j.heliyon.2022.e10866.
doi: 10.1016/j.heliyon.2022.e10866 |
[8] |
Huang P, Xia L, Guo Q, et al. Genome-wide association studies identify miRNA-194 as a prognostic biomarker for gastrointestinal cancer by targeting ATP6V1F, PPP1R14B, BTF3L4 and SLC7A5[J]. Front Oncol, 2022, 12: 1025594. DOI: 10.3389/fonc.2022.1025594.
doi: 10.3389/fonc.2022.1025594 |
[9] |
Najumudeen AK, Ceteci F, Fey SK, et al. The amino acid transporter SLC7A5 is required for efficient growth of KRAS-mutant colorectal cancer[J]. Nat Genet, 2021, 53(1): 16-26. DOI: 10.1038/s41588-020-00753-3.
doi: 10.1038/s41588-020-00753-3 pmid: 33414552 |
[10] |
Kurozumi S, Kaira K, Matsumoto H, et al. Association of L-type amino acid transporter 1 (LAT1) with the immune system and prognosis in invasive breast cancer[J]. Sci Rep, 2022, 12(1): 2742. DOI: 10.1038/s41598-022-06615-8.
doi: 10.1038/s41598-022-06615-8 pmid: 35177712 |
[11] |
Bodoor K, Almomani R, Alqudah M, et al. LAT1 (SLC7A5) overexpression in negative Her2 group of breast cancer: a potential therapy target[J]. Asian Pac J Cancer Prev, 2020, 21(5): 1453-1458. DOI: 10.31557/APJCP.2020.21.5.1453.
doi: 10.31557/APJCP.2020.21.5.1453 |
[12] |
Wang Q, Liu H, Liu Z, et al. Circ-SLC7A5, a potential prognostic circulating biomarker for detection of ESCC[J]. Cancer Genet, 2020, 240: 33-39. DOI: 10.1016/j.cancergen.2019.11.001.
doi: 10.1016/j.cancergen.2019.11.001 |
[13] |
Lin W, Wang C, Liu G, et al. SLC7A11/xCT in cancer: biological functions and therapeutic implications[J]. Am J Cancer Res, 2020, 10(10): 3106-3126.
pmid: 33163260 |
[14] |
Kim DH, Kim WD, Kim SK, et al. TGF-β1-mediated repression of SLC7A11 drives vulnerability to GPX4 inhibition in hepatocellular carcinoma cells[J]. Cell Death Dis, 2020, 11(5): 406. DOI: 10.1038/s41419-020-2618-6.
doi: 10.1038/s41419-020-2618-6 pmid: 32471991 |
[15] |
Feng L, Zhao K, Sun L, et al. SLC7A11 regulated by NRF2 modulates esophageal squamous cell carcinoma radiosensitivity by inhibiting ferroptosis[J]. J Transl Med, 2021, 19(1): 367. DOI: 10.1186/s12967-021-03042-7.
doi: 10.1186/s12967-021-03042-7 pmid: 34446045 |
[16] |
Hu K, Li K, Lv J, et al. Suppression of the SLC7A11/glutathione axis causes synthetic lethality in KRAS-mutant lung adenocarcinoma[J]. J Clin Invest, 2020, 130(4): 1752-1766. DOI: 10.1172/JCI124049.
doi: 10.1172/JCI124049 pmid: 31874110 |
[17] |
Chen MC, Hsu LL, Wang SF, et al. ROS mediate xCT-dependent cell death in human breast cancer cells under glucose deprivation[J]. Cells, 2020, 9(7): 1598. DOI: 10.3390/cells9071598.
doi: 10.3390/cells9071598 |
[18] |
Ruiu R, Rolih V, Bolli E, et al. Fighting breast cancer stem cells through the immune-targeting of the xCT cystine-glutamate antiporter[J]. Cancer Immunol Immunother, 2019, 68(1): 131-141. DOI: 10.1007/s00262-018-2185-1.
doi: 10.1007/s00262-018-2185-1 pmid: 29947961 |
[19] |
Badgley MA, Kremer DM, Maurer HC, et al. Cysteine depletion induces pancreatic tumor ferroptosis in mice[J]. Science, 2020, 368(6486): 85-89. DOI: 10.1126/science.aaw9872.
doi: 10.1126/science.aaw9872 pmid: 32241947 |
[20] |
Bröer S. Amino acid transporters as targets for cancer therapy: why, where, when, and how[J]. Int J Mol Sci, 2020, 21(17): 6156. DOI: 10.3390/ijms21176156.
doi: 10.3390/ijms21176156 |
[21] |
Wang Q, Holst J. L-type amino acid transport and cancer: targeting the mTORC1 pathway to inhibit neoplasia[J]. Am J Cancer Res, 2015, 5(4): 1281-1294.
pmid: 26101697 |
[22] |
Koppula P, Zhuang L, Gan B. Cystine transporter SLC7A11/xCT in cancer: ferroptosis, nutrient dependency, and cancer therapy[J]. Protein Cell, 2021, 12(8): 599-620. DOI: 10.1007/s13238-020-00789-5.
doi: 10.1007/s13238-020-00789-5 |
[23] |
Quan L, Ohgaki R, Hara S, et al. Amino acid transporter LAT1 in tumor-associated vascular endothelium promotes angiogenesis by regulating cell proliferation and VEGF-A-dependent mTORC1 activation[J]. J Exp Clin Cancer Res, 2020, 39(1): 266. DOI: 10.1186/s13046-020-01762-0.
doi: 10.1186/s13046-020-01762-0 |
[24] |
Cormerais Y, Giuliano S, LeFloch R, et al. Genetic disruption of the multifunctional CD98/LAT1 complex demonstrates the key role of essential amino acid transport in the control of mTORC1 and tumor growth[J]. Cancer Res, 2016, 76(15): 4481-4492. DOI: 10.1158/0008-5472.CAN-15-3376.
doi: 10.1158/0008-5472.CAN-15-3376 pmid: 27302165 |
[25] |
Galan-Cobo A, Sitthideatphaiboon P, Qu X, et al. LKB1 and KEAP1/NRF2 pathways cooperatively promote metabolic reprogramming with enhanced glutamine dependence in KRAS-mutant lung adenocarcinoma[J]. Cancer Res, 2019, 79(13): 3251-3267. DOI: 10.1158/0008-5472.CAN-18-3527.
doi: 10.1158/0008-5472.CAN-18-3527 pmid: 31040157 |
[26] |
Liu X, Olszewski K, Zhang Y, et al. Cystine transporter regulation of pentose phosphate pathway dependency and disulfide stress exposes a targetable metabolic vulnerability in cancer[J]. Nat Cell Biol, 2020, 22(4): 476-486. DOI: 10.1038/s41556-020-0496-x.
doi: 10.1038/s41556-020-0496-x pmid: 32231310 |
[27] |
Wu Z, Xu J, Liang C, et al. Emerging roles of the solute carrier family in pancreatic cancer[J]. Clin Transl Med, 2021, 11(3): e356. DOI: 10.1002/ctm2.356.
doi: 10.1002/ctm2.356 pmid: 33783998 |
[28] |
Häfliger P, Charles RP. The L-type amino acid transporter LAT1—an emerging target in cancer[J]. Int J Mol Sci, 2019, 20(10): 2428. DOI: 10.3390/ijms20102428.
doi: 10.3390/ijms20102428 |
[29] |
Maekawa-Matsuura M, Fujieda K, Maekawa Y, et al. LAT1-targeting thermoresponsive liposomes for effective cellular uptake by cancer cells[J]. ACS Omega, 2019, 4(4): 6443-6451. DOI: 10.1021/acsomega.9b00216.
doi: 10.1021/acsomega.9b00216 |
[30] |
Wang Y, Qin L, Chen W, et al. Novel strategies to improve tumour therapy by targeting the proteins MCT1, MCT4 and LAT1[J]. Eur J Med Chem, 2021, 226: 113806. DOI: 10.1016/j.ejmech.2021.113806.
doi: 10.1016/j.ejmech.2021.113806 |
[31] |
Zhang Y, Shi J, Liu X, et al. BAP1 links metabolic regulation of ferroptosis to tumour suppression[J]. Nat Cell Biol, 2018, 20(10): 1181-1192. DOI: 10.1038/s41556-018-0178-0.
doi: 10.1038/s41556-018-0178-0 pmid: 30202049 |
[32] |
Lang X, Green MD, Wang W, et al. Radiotherapy and immunotherapy promote tumoral lipid oxidation and ferroptosis via synergistic repression of SLC7A11[J]. Cancer Discov, 2019, 9(12): 1673-1685. DOI: 10.1158/2159-8290.CD-19-0338.
doi: 10.1158/2159-8290.CD-19-0338 pmid: 31554642 |
[33] |
Wang W, Green M, Choi JE, et al. CD8+ T cells regulate tumour ferroptosis during cancer immunotherapy[J]. Nature, 2019, 569(7755): 270-274. DOI: 10.1038/s41586-019-1170-y.
doi: 10.1038/s41586-019-1170-y |
[34] |
Lei G, Zhang Y, Koppula P, et al. The role of ferroptosis in ionizing radiation-induced cell death and tumor suppression[J]. Cell Res, 2020, 30(2): 146-162. DOI: 10.1038/s41422-019-0263-3.
doi: 10.1038/s41422-019-0263-3 pmid: 31949285 |
[35] |
Ye LF, Chaudhary KR, Zandkarimi F, et al. Radiation-induced lipid peroxidation triggers ferroptosis and synergizes with ferroptosis inducers[J]. ACS Chem Biol, 2020, 15(2): 469-484. DOI: 10.1021/acschembio.9b00939.
doi: 10.1021/acschembio.9b00939 pmid: 31899616 |
[1] | Liu Na, Kou Jieli, Yang Feng, Liu Taotao, Li Danping, Han Junrui, Yang Lizhou. Clinical value of serum miR-106b-5p and miR-760 combined with low-dose spiral CT in the diagnosis of early lung cancer [J]. Journal of International Oncology, 2024, 51(6): 321-325. |
[2] | Yang Mi, Bie Jun, Zhang Jiayong, Deng Jiaxiu, Tang Zuge, Lu Jun. Analysis of the efficacy and prognosis of neoadjuvant therapy for locally advanced resectable esophageal cancer [J]. Journal of International Oncology, 2024, 51(6): 332-337. |
[3] | Yuan Jian, Huang Yanhua. Diagnostic value of Hp-IgG antibody combined with serum DKK1 and sB7-H3 in early gastric cancer [J]. Journal of International Oncology, 2024, 51(6): 338-343. |
[4] | Chen Hongjian, Zhang Suqing. Study on the relationship between serum miR-24-3p, H2AFX and clinical pathological features and postoperative recurrence in liver cancer patients [J]. Journal of International Oncology, 2024, 51(6): 344-349. |
[5] | Guo Zehao, Zhang Junwang. Role of PFDN and its subunits in tumorigenesis and tumor development [J]. Journal of International Oncology, 2024, 51(6): 350-353. |
[6] | Zhang Baihong, Yue Hongyun. Advances in anti-tumor drugs with new mechanisms of action [J]. Journal of International Oncology, 2024, 51(6): 354-358. |
[7] | Xu Fenglin, Wu Gang. Research progress of EBV in tumor immune microenvironment and immunotherapy of nasopharyngeal carcinoma [J]. Journal of International Oncology, 2024, 51(6): 359-363. |
[8] | Wang Ying, Liu Nan, Guo Bing. Advances of antibody-drug conjugate in the therapy of metastatic breast cancer [J]. Journal of International Oncology, 2024, 51(6): 364-369. |
[9] | Zhang Rui, Chu Yanliu. Research progress of colorectal cancer risk assessment models based on FIT and gut microbiota [J]. Journal of International Oncology, 2024, 51(6): 370-375. |
[10] | Gao Fan, Wang Ping, Du Chao, Chu Yanliu. Research progress on intestinal flora and non-surgical treatment of the colorectal cancer [J]. Journal of International Oncology, 2024, 51(6): 376-381. |
[11] | Liu Jing, Liu Qin, Huang Mei. Prognostic model construction of lung infection in patients with chemoradiotherapy for esophageal cancer based on SMOTE algorithm [J]. Journal of International Oncology, 2024, 51(5): 267-273. |
[12] | Yang Lin, Lu Ning, Wen Hua, Zhang Mingxin, Zhu Lin. Study on the clinical relationship between inflammatory burden index and gastric cancer [J]. Journal of International Oncology, 2024, 51(5): 274-279. |
[13] | Wang Junyi, Hong Kaibin, Ji Rongjia, Chen Dachao. Effect of cancer nodules on liver metastases after radical resection of colorectal cancer [J]. Journal of International Oncology, 2024, 51(5): 280-285. |
[14] | Zhang Ningning, Yang Zhe, Tan Limei, Li Zhenning, Wang Di, Wei Yongzhi. Diagnostic value of cervical cell DNA ploidy analysis combined with B7-H4 and PKCδ for cervical cancer [J]. Journal of International Oncology, 2024, 51(5): 286-291. |
[15] | Fu Yi, Ma Chenying, Zhang Lu, Zhou Juying. Research progress of habitat analysis in radiomics of malignant tumors [J]. Journal of International Oncology, 2024, 51(5): 292-297. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||