
Journal of International Oncology ›› 2023, Vol. 50 ›› Issue (5): 285-289.doi: 10.3760/cma.j.cn371439-20230123-00057
• Reviews • Previous Articles Next Articles
					
													Zhang Yuan1, Feng Qinmei2(
), Ma Meijie1, Bai Zhiyu1, Li Qi1
												  
						
						
						
					
				
Received:2023-01-23
															
							
																	Revised:2023-02-15
															
							
															
							
																	Online:2023-05-08
															
							
																	Published:2023-06-27
															
						Contact:
								Feng Qinmei   
																	E-mail:qmf369@hotmail.com
																					Zhang Yuan, Feng Qinmei, Ma Meijie, Bai Zhiyu, Li Qi. Current status of GSDME research in malignant tumors[J]. Journal of International Oncology, 2023, 50(5): 285-289.
| [1] |  
											 De Schutter E, Croes L, Ibrahim J, et al. GSDME and its role in cancer: from behind the scenes to the front of the stage[J]. Int J Cancer, 2021, 148(12): 2872-2883. DOI: 10.1002/ijc.33390. 
																							 doi: 10.1002/ijc.33390 pmid: 33186472  | 
										
| [2] |  
											 Saeki N, Kuwahara Y, Sasaki H, et al. Gasdermin (Gsdm) locali-zing to mouse chromosome 11 is predominantly expressed in upper gastrointestinal tract but significantly suppressed in human gastric cancer cells[J]. Mamm Genome, 2000, 11(9): 718-724. DOI: 10. 1007/s003350010138. 
																							 doi: 10.1007/s003350010138 pmid: 10967128  | 
										
| [3] |  
											 Ibrahim J, Op de Beeck K, Fransen E, et al. Methylation analysis of Gasdermin E shows great promise as a biomarker for colorectal cancer[J]. Cancer Med, 2019, 8(5): 2133-2145. DOI: 10.1002/cam4.2103. 
																							 doi: 10.1002/cam4.2103  | 
										
| [4] |  
											 Wang Y, Gao W, Shi X, et al. Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin[J]. Nature, 2017, 547(7661): 99-103. DOI: 10.1038/nature22393. 
																							 doi: 10.1038/nature22393  | 
										
| [5] |  
											 张依格, 高军, 王建榜. GSDME介导的细胞焦亡在肿瘤发生发展中的作用及其临床意义[J]. 中国肿瘤生物治疗杂志, 2021, 28(3): 288-293. DOI: 10.3872/j.issn.1007-385x.2021.03.011. 
																							 doi: 10.3872/j.issn.1007-385x.2021.03.011  | 
										
| [6] |  
											 Jiang M, Qi L, Li L, et al. The caspase-3/GSDME signal pathway as a switch between apoptosis and pyroptosis in cancer[J]. Cell Death Discov, 2020, 6: 112. DOI: 10.1038/s41420-020-00349-0. 
																							 doi: 10.1038/s41420-020-00349-0 pmid: 33133646  | 
										
| [7] |  
											 Hu L, Chen M, Chen X, et al. Chemotherapy-induced pyroptosis is mediated by BAK/BAX-caspase-3-GSDME pathway and inhibited by 2-bromopalmitate[J]. Cell Death Dis, 2020, 11(4): 281. DOI: 10.1038/s41419-020-2476-2. 
																							 doi: 10.1038/s41419-020-2476-2 pmid: 32332857  | 
										
| [8] |  
											 Yang F, Bettadapura SN, Smeltzer MS, et al. Pyroptosis and pyroptosis-inducing cancer drugs[J]. Acta Pharmacol Sin, 2022, 43(10): 2462-2473. DOI: 10.1038/s41401-022-00887-6. 
																							 doi: 10.1038/s41401-022-00887-6 pmid: 35288674  | 
										
| [9] |  
											 Zhang Z, Zhang Y, Xia S, et al. Gasdermin E suppresses tumour growth by activating anti-tumour immunity[J]. Nature, 2020, 579(7799): 415-420. DOI: 10.1038/s41586-020-2071-9. 
																							 doi: 10.1038/s41586-020-2071-9  | 
										
| [10] |  
											 Wu F, Wang L, Zhou C. Lung cancer in China: current and prospect[J]. Curr Opin Oncol, 2021, 33(1): 40-46. DOI: 10.1097/CCO.0000000000000703. 
																							 doi: 10.1097/CCO.0000000000000703 pmid: 33165004  | 
										
| [11] |  
											 高世华, 李植锋, 蔡键锋. GSDME通过p53、caspase3增强小细胞肺癌细胞的紫杉醇敏感[J]. 医学研究杂志, 2021, 50(10): 138-142. DOI: 10.11969/j.issn.1673-548X.2021.10.030. 
																							 doi: 10.11969/j.issn.1673-548X.2021.10.030  | 
										
| [12] |  
											 Zhang CC, Li CG, Wang YF, et al. Chemotherapeutic paclitaxel and cisplatin differentially induce pyroptosis in A549 lung cancer cells via caspase-3/GSDME activation[J]. Apoptosis, 2019, 24(3/4): 312-325. DOI: 10.1007/s10495-019-01515-1. 
																							 doi: 10.1007/s10495-019-01515-1  | 
										
| [13] |  
											 Peng Z, Wang P, Song W, et al. GSDME enhances cisplatin sensitivity to regress non-small cell lung carcinoma by mediating pyroptosis to trigger antitumor immunocyte infiltration[J]. Signal Transduct Target Ther, 2020, 5(1): 159. DOI: 10.1038/s41392-020-00274-9. 
																							 doi: 10.1038/s41392-020-00274-9  | 
										
| [14] |  
											 Lu H, Zhang S, Wu J, et al. Molecular targeted therapies elicit concurrent apoptotic and GSDME-dependent pyroptotic tumor cell death[J]. Clin Cancer Res, 2018, 24(23): 6066-6077. DOI: 10.1158/1078-0432.CCR-18-1478. 
																							 doi: 10.1158/1078-0432.CCR-18-1478 pmid: 30061362  | 
										
| [15] |  
											 Li W, Xu R, Zhu B, et al. Circular RNAs: functions and mechanisms in nasopharyngeal carcinoma[J]. Head Neck, 2022, 44(2): 494-504. DOI: 10.1002/hed.26962. 
																							 doi: 10.1002/hed.26962  | 
										
| [16] |  
											 Guan S, Wei J, Huang L, et al. Chemotherapy and chemo-resistance in nasopharyngeal carcinoma[J]. Eur J Med Chem, 2020, 207: 112758. DOI: 10.1016/j.ejmech.2020.112758. 
																							 doi: 10.1016/j.ejmech.2020.112758  | 
										
| [17] |  
											 Cai J, Yi M, Tan Y, et al. Natural product triptolide induces GSDME-mediated pyroptosis in head and neck cancer through suppressing mitochondrial hexokinase-Ⅱ[J]. J Exp Clin Cancer Res, 2021, 40(1): 190. DOI: 10.1186/s13046-021-01995-7. 
																							 doi: 10.1186/s13046-021-01995-7  | 
										
| [18] |  
											 Li Q, Wang M, Zhang Y, et al. BIX-01294-enhanced chemosensitivity in nasopharyngeal carcinoma depends on autophagy-induced pyroptosis[J]. Acta Biochim Biophys Sin (Shanghai), 2020, 52(10): 1131-1139. DOI: 10.1093/abbs/gmaa097. 
																							 doi: 10.1093/abbs/gmaa097  | 
										
| [19] |  
											 Di M, Miao J, Pan Q, et al. OTUD4-mediated GSDME deubiquitination enhances radiosensitivity in nasopharyngeal carcinoma by inducing pyroptosis[J]. J Exp Clin Cancer Res, 2022, 41(1): 328. DOI: 10.1186/s13046-022-02533-9. 
																							 doi: 10.1186/s13046-022-02533-9  | 
										
| [20] |  
											 Yin J, Che G, Wang W, et al. Investigating the prognostic significance of pyroptosis-related genes in gastric cancer and their impact on cells' biological functions[J]. Front Oncol, 2022, 12: 861284. DOI: 10.3389/fonc.2022.861284. 
																							 doi: 10.3389/fonc.2022.861284  | 
										
| [21] |  
											 Kim MS, Chang X, Yamashita K, et al. Aberrant promoter me-thylation and tumor suppressive activity of the DFNA5 gene in colorectal carcinoma[J]. Oncogene, 2008, 27(25): 3624-3634. DOI: 10.1038/sj.onc.1211021. 
																							 doi: 10.1038/sj.onc.1211021 pmid: 18223688  | 
										
| [22] |  
											 Wu M, Wang Y, Yang D, et al. A PLK1 kinase inhibitor enhances the chemosensitivity of cisplatin by inducing pyroptosis in oesophageal squamous cell carcinoma[J]. EBioMedicine, 2019, 41: 244-255. DOI: 10.1016/j.ebiom.2019.02.012. 
																							 doi: S2352-3964(19)30084-2 pmid: 30876762  | 
										
| [23] |  
											 Yu J, Li S, Qi J, et al. Cleavage of GSDME by caspase-3 determines lobaplatin-induced pyroptosis in colon cancer cells[J]. Cell Death Dis, 2019, 10(3): 193. DOI: 10.1038/s41419-019-1441-4. 
																							 doi: 10.1038/s41419-019-1441-4 pmid: 30804337  | 
										
| [24] |  
											 Zhang X, Zhang P, An L, et al. Miltirone induces cell death in hepatocellular carcinoma cell through GSDME-dependent pyroptosis[J]. Acta Pharm Sin B, 2020, 10(8): 1397-1413. DOI: 10.1016/j.apsb.2020.06.015. 
																							 doi: 10.1016/j.apsb.2020.06.015 pmid: 32963939  | 
										
| [25] |  
											 Kashyap D, Pal D, Sharma R, et al. Global increase in breast cancer incidence: risk factors and preventive measures[J]. Biomed Res Int, 2022, 2022: 9605439. DOI: 10.1155/2022/9605439. 
																							 doi: 10.1155/2022/9605439  | 
										
| [26] |  
											 Garcia-Martinez L, Zhang Y, Nakata Y, et al. Epigenetic mechanisms in breast cancer therapy and resistance[J]. Nat Commun, 2021, 12(1): 1786. DOI: 10.1038/s41467-021-22024-3. 
																							 doi: 10.1038/s41467-021-22024-3 pmid: 33741974  | 
										
| [27] |  
											 Zhang Z, Zhang H, Li D, et al. Caspase-3-mediated GSDME induced pyroptosis in breast cancer cells through the ROS/JNK signalling pathway[J]. J Cell Mol Med, 2021, 25(17): 8159-8168. DOI: 10.1111/jcmm.16574. 
																							 doi: 10.1111/jcmm.16574 pmid: 34369076  | 
										
| [28] |  
											 Croes L, Beyens M, Fransen E, et al. Large-scale analysis of DFNA5 methylation reveals its potential as biomarker for breast cancer[J]. Clin Epigenetics, 2018, 10: 51. DOI: 10.1186/s13148-018-0479-y. 
																							 doi: 10.1186/s13148-018-0479-y  | 
										
| [29] |  
											 弓伟华. MCF7/Taxol细胞中DNA甲基化调控GSDME表达及在化疗耐药中的作用[D]. 郑州: 郑州大学, 2021. DOI: 10.27466/d.cnki.gzzdu.2021.002365. 
																							 doi: 10.27466/d.cnki.gzzdu.2021.002365  | 
										
| [30] |  
											 Wang Y, Peng J, Mi X, et al. p53-GSDME elevation: a path for CDK7 inhibition to suppress breast cancer cell survival[J]. Front Mol Biosci, 2021, 8: 697457. DOI: 10.3389/fmolb.2021.697457. 
																							 doi: 10.3389/fmolb.2021.697457  | 
										
| [31] |  
											 Zhou B, Zhang JY, Liu XS, et al. Tom20 senses iron-activated ROS signaling to promote melanoma cell pyroptosis[J]. Cell Res, 2018, 28(12): 1171-1185. DOI: 10.1038/s41422-018-0090-y. 
																							 doi: 10.1038/s41422-018-0090-y pmid: 30287942  | 
										
| [32] |  
											 Zheng Z, Bian Y, Zhang Y, et al. Metformin activates AMPK/SIRT1/NF-κB pathway and induces mitochondrial dysfunction to drive caspase3/GSDME-mediated cancer cell pyroptosis[J]. Cell Cycle, 2020, 19(10): 1089-1104. DOI: 10.1080/15384101.2020.1743911. 
																							 doi: 10.1080/15384101.2020.1743911 pmid: 32286137  | 
										
| [33] |  
											 Liu Y, Fang Y, Chen X, et al. Gasdermin E-mediated target cell pyroptosis by CAR T cells triggers cytokine release syndrome[J]. Sci Immunol, 2020, 5(43): eaax7969. DOI: 10.1126/sciimmunol.aax7969. 
																							 doi: 10.1126/sciimmunol.aax7969  | 
										
| [34] |  
											 Berkel C, Cacan E. Differential expression and copy number variation of gasdermin (GSDM) family members, pore-forming proteins in pyroptosis, in normal and malignant serous ovarian tissue[J]. Inflammation, 2021, 44(6): 2203-2216. DOI: 10.1007/s10753-021-01493-0. 
																							 doi: 10.1007/s10753-021-01493-0 pmid: 34091823  | 
										
| [35] |  
											 Kobayashi T, Mitsuhashi A, Hongying P, et al. Bexarotene-induced cell death in ovarian cancer cells through caspase-4-gasdermin E mediated pyroptosis[J]. Sci Rep, 2022, 12(1): 11123. DOI: 10.1038/s41598-022-15348-7. 
																							 doi: 10.1038/s41598-022-15348-7 pmid: 35778597  | 
										
| [36] |  
											 李婷婷, 刘申平, 杜明. Gasdermin E多肽抑制剂对卵巢癌化疗诱导肠道损伤的改善作用[J]. 中国临床医学, 2022, 29(1): 35-41 DOI: 10.12025/j.issn.1008-6358.2022.20211121. 
																							 doi: 10.12025/j.issn.1008-6358.2022.20211121  | 
										
| [37] |  
											 Tan G, Huang C, Chen J, et al. HMGB1 released from GSDME-mediated pyroptotic epithelial cells participates in the tumorigenesis of colitis-associated colorectal cancer through the ERK1/2 pathway[J]. J Hematol Oncol, 2020, 13(1): 149. DOI: 10.1186/s13045-020-00985-0. 
																							 doi: 10.1186/s13045-020-00985-0  | 
										
| [38] |  
											 Shen X, Wang H, Weng C, et al. Caspase 3/GSDME-dependent pyroptosis contributes to chemotherapy drug-induced nephrotoxicity[J]. Cell Death Dis, 2021, 12(2): 186. DOI: 10.1038/s41419-021-03458-5. 
																							 doi: 10.1038/s41419-021-03458-5 pmid: 33589596  | 
										
| [39] |  
											 Zhang Y, Chen X, Gueydan C, et al. Plasma membrane changes during programmed cell deaths[J]. Cell Res, 2018, 28(1): 9-21. DOI: 10.1038/cr.2017.133. 
																							 doi: 10.1038/cr.2017.133 pmid: 29076500  | 
										
| [1] | Liu Na, Kou Jieli, Yang Feng, Liu Taotao, Li Danping, Han Junrui, Yang Lizhou. Clinical value of serum miR-106b-5p and miR-760 combined with low-dose spiral CT in the diagnosis of early lung cancer [J]. Journal of International Oncology, 2024, 51(6): 321-325. | 
| [2] | Yang Mi, Bie Jun, Zhang Jiayong, Deng Jiaxiu, Tang Zuge, Lu Jun. Analysis of the efficacy and prognosis of neoadjuvant therapy for locally advanced resectable esophageal cancer [J]. Journal of International Oncology, 2024, 51(6): 332-337. | 
| [3] | Yuan Jian, Huang Yanhua. Diagnostic value of Hp-IgG antibody combined with serum DKK1 and sB7-H3 in early gastric cancer [J]. Journal of International Oncology, 2024, 51(6): 338-343. | 
| [4] | Chen Hongjian, Zhang Suqing. Study on the relationship between serum miR-24-3p, H2AFX and clinical pathological features and postoperative recurrence in liver cancer patients [J]. Journal of International Oncology, 2024, 51(6): 344-349. | 
| [5] | Guo Zehao, Zhang Junwang. Role of PFDN and its subunits in tumorigenesis and tumor development [J]. Journal of International Oncology, 2024, 51(6): 350-353. | 
| [6] | Zhang Baihong, Yue Hongyun. Advances in anti-tumor drugs with new mechanisms of action [J]. Journal of International Oncology, 2024, 51(6): 354-358. | 
| [7] | Xu Fenglin, Wu Gang. Research progress of EBV in tumor immune microenvironment and immunotherapy of nasopharyngeal carcinoma [J]. Journal of International Oncology, 2024, 51(6): 359-363. | 
| [8] | Wang Ying, Liu Nan, Guo Bing. Advances of antibody-drug conjugate in the therapy of metastatic breast cancer [J]. Journal of International Oncology, 2024, 51(6): 364-369. | 
| [9] | Zhang Rui, Chu Yanliu. Research progress of colorectal cancer risk assessment models based on FIT and gut microbiota [J]. Journal of International Oncology, 2024, 51(6): 370-375. | 
| [10] | Gao Fan, Wang Ping, Du Chao, Chu Yanliu. Research progress on intestinal flora and non-surgical treatment of the colorectal cancer [J]. Journal of International Oncology, 2024, 51(6): 376-381. | 
| [11] | Liu Jing, Liu Qin, Huang Mei. Prognostic model construction of lung infection in patients with chemoradiotherapy for esophageal cancer based on SMOTE algorithm [J]. Journal of International Oncology, 2024, 51(5): 267-273. | 
| [12] | Yang Lin, Lu Ning, Wen Hua, Zhang Mingxin, Zhu Lin. Study on the clinical relationship between inflammatory burden index and gastric cancer [J]. Journal of International Oncology, 2024, 51(5): 274-279. | 
| [13] | Wang Junyi, Hong Kaibin, Ji Rongjia, Chen Dachao. Effect of cancer nodules on liver metastases after radical resection of colorectal cancer [J]. Journal of International Oncology, 2024, 51(5): 280-285. | 
| [14] | Zhang Ningning, Yang Zhe, Tan Limei, Li Zhenning, Wang Di, Wei Yongzhi. Diagnostic value of cervical cell DNA ploidy analysis combined with B7-H4 and PKCδ for cervical cancer [J]. Journal of International Oncology, 2024, 51(5): 286-291. | 
| [15] | Fu Yi, Ma Chenying, Zhang Lu, Zhou Juying. Research progress of habitat analysis in radiomics of malignant tumors [J]. Journal of International Oncology, 2024, 51(5): 292-297. | 
| Viewed | ||||||
| 
										Full text | 
									
										 | 
								|||||
| 
										Abstract | 
									
										 | 
								|||||