Journal of International Oncology ›› 2024, Vol. 51 ›› Issue (5): 308-311.doi: 10.3760/cma.j.cn371439-20240304-00052
• Reviews • Previous Articles Next Articles
Wang Peixin1, Zhao Jun2, Xu Shihong2(), Jiang Zhaoyang2, Wang Xiaoqiang2, Yang Hongjuan1
Received:
2024-03-04
Revised:
2024-04-03
Online:
2024-05-08
Published:
2024-06-26
Contact:
Xu Shihong, Email:308359102@qq.com
Supported by:
Wang Peixin, Zhao Jun, Xu Shihong, Jiang Zhaoyang, Wang Xiaoqiang, Yang Hongjuan. Progress of ferroptosis-related mechanisms in osteosarcoma[J]. Journal of International Oncology, 2024, 51(5): 308-311.
[1] | Hong-Bin S, Wan-Jun Y, Chen-Hui D, et al. Identification of an iron metabolism-related lncRNA signature for predicting osteosarcoma survival and immune landscape[J]. Front Genet, 2022, 13: 816460. DOI: 10.3389/fgene.2022.816460. |
[2] |
Du SH, Li JX, Du CH, et al. Overendocytosis of superparamagnetic Iron oxide particles increases apoptosis and triggers autophagic cell death in human osteosarcoma cell under a spinning magnetic field[J]. Oncotarget, 2017, 8(6): 9410-9424. DOI: 10.18632/oncotarget.14114.
pmid: 28031531 |
[3] |
Raghubir M, Rahman CN, Fang J, et al. Osteosarcoma growth suppression by riluzole delivery via iron oxide nanocage in nude mice[J]. Oncol Rep, 2020, 43(1): 169-176. DOI: 10.3892/or.2019.7420.
pmid: 31789402 |
[4] | Zhou L, Zhang L, Wang S, et al. Labile iron affects pharmacological ascorbate-induced toxicity in osteosarcoma cell lines[J]. Free Radic Res, 2020, 54(6): 385-396. DOI: 10.1080/10715762.2020.1744577. |
[5] | Argenziano M, Di Paola A, Tortora C, et al. Effects of iron chelation in osteosarcoma[J]. Curr Cancer Drug Targets, 2021, 21(5): 443-455. DOI: 10.2174/1568009620666201230090531. |
[6] |
Chen Y, Fan ZM, Yang Y, et al. Iron metabolism and its contribution to cancer (review)[J]. Int J Oncol, 2019, 54(4): 1143-1154. DOI: 10.3892/ijo.2019.4720.
pmid: 30968149 |
[7] |
Torti SV, Manz DH, Paul BT, et al. Iron and cancer[J]. Annu Rev Nutr, 2018, 38: 97-125. DOI: 10.1146/annurev-nutr-082117-051732.
pmid: 30130469 |
[8] |
Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149(5): 1060-1072. DOI: 10.1016/j.cell.2012.03.042.
pmid: 22632970 |
[9] |
Chifman J, Laubenbacher R, Torti SV. A systems biology approach to iron metabolism[J]. Adv Exp Med Biol, 2014, 844: 201-225. DOI: 10.1007/978-1-4939-2095-2_10.
pmid: 25480643 |
[10] | Ma XW, Zhao JZ, Feng HL. Targeting iron metabolism in osteosarcoma[J]. Horm Cancer, 2023, 14(1): 31. DOI: 10.1007/s12672-023-00637-y. |
[11] |
Zheng JS, Conrad M. The metabolic underpinnings of ferroptosis[J]. Cell Metab, 2020, 32(6): 920-937. DOI: 10.1016/j.cmet.2020.10.011.
pmid: 33217331 |
[12] | 王福俤. 铁科学(Ferrology): 充满魅力的新型交叉学科[J]. 中国科学(生命科学), 2023, 53(10): 1331-1344. |
[13] | 袁嘉豪. International Hepatology|细胞内游离铁是铁调素表达和铁代谢的关键调节子[J]. 临床肝胆病杂志, 2023, 39(7): 1686. DOI: 10.3969/j.issn.1001-5256.2023.07.026. |
[14] | Zhao JZ, Zhao Y, Ma XW, et al. Targeting ferroptosis in osteosarcoma[J]. J Bone Oncol, 2021, 30: 100380. DOI: 10.1016/j.jbo.2021.100380. |
[15] | Jiang MY, Jike YJ, Gan F, et al. Verification of ferroptosis subcluster-associated genes related to osteosarcoma and exploration of immune targeted therapy[J]. Oxid Med Cell Longev, 2022, 2022: 9942014. DOI: 10.1155/2022/9942014. |
[16] | 吴娜, 饶颖, 周佳林, 等. 中药通过调节铁死亡作用治疗溃疡性结肠炎的用药规律研究[J]. 中成药, 2023, 45(10): 3482-3486. DOI: 10.3969/j.issn.1001-1528.2023.10.056. |
[17] | Chen X, Yu CH, Kang R, et al. Iron metabolism in ferroptosis[J]. Front Cell Dev Biol, 2020, 8: 590226. DOI: 10.3389/fcell.2020.590226. |
[18] |
De Vico G, Martano M, Maiolino PL, et al. Expression of transferrin receptor-1 (TFR-1) in canine osteosarcomas[J]. Vet Med Sci, 2020, 6(3): 272-276. DOI: 10.1002/vms3.258.
pmid: 32239803 |
[19] | Isani G, Bertocchi M, Andreani G, et al. Cytotoxic effects of artemisia annua L. and pure artemisinin on the D-17 canine osteosarcoma cell line[J]. Oxid Med Cell Longev, 2019, 2019: 1615758. DOI: 10.1155/2019/1615758. |
[20] |
Jiang MY, Jike YJ, Liu KC, et al. Exosome-mediated miR-144-3p promotes ferroptosis to inhibit osteosarcoma proliferation, migration, and invasion through regulating ZEB1[J]. Mol Cancer, 2023, 22(1): 113. DOI: 10.1186/s12943-023-01804-z.
pmid: 37461104 |
[21] | Zhang JH, Wang XJ, Wu WZ, et al. Expression of the Nrf2 and Keap1 proteins and their clinical significance in osteosarcoma[J]. Biochem Biophys Res Commun, 2016, 473(1): 42-46. DOI: 10.1016/j.bbrc.2016.03.047. |
[22] | Fu JK, Li T, Yang YZ, et al. Activatable nanomedicine for overcoming hypoxia-induced resistance to chemotherapy and inhibiting tumor growth by inducing collaborative apoptosis and ferroptosis in solid tumors[J]. Biomaterials, 2021, 268: 120537. DOI: 10.1016/j.biomaterials.2020.120537. |
[23] |
Liu Q, Wang KZ. The induction of ferroptosis by impairing STAT3/Nrf2/GPx4 signaling enhances the sensitivity of osteosarcoma cells to cisplatin[J]. Cell Biol Int, 2019, 43(11): 1245-1256. DOI: 10.1002/cbin.11121.
pmid: 30811078 |
[24] | Wen RJ, Dong X, Zhuang HW, et al. Baicalin induces ferroptosis in osteosarcomas through a novel Nrf2/xCT/GPX4 regulatory axis[J]. Phytomedicine, 2023, 116: 154881. DOI: 10.1016/j.phymed.2023.154881. |
[25] | Wang LF, Pan S. The regulatory effects of p53 on the typical and atypical ferroptosis in the pathogenesis of osteosarcoma: a systematic review[J]. Front Genet, 2023, 14: 1154299. DOI: 10.3389/fgene.2023.1154299. |
[26] | 朱青, 李明, 王佳音, 等. 姜黄素经SLC7A11调控骨肉瘤细胞铁死亡机制初探[J]. 陕西中医药大学学报, 2024, 47(2): 17-21. DOI: 10.13424/j.cnki.jsctcm.2024.02.004. |
[27] | Luo Y, Gao X, Zou LT, et al. Bavachin induces ferroptosis through the STAT3/P53/SLC7A11 axis in osteosarcoma cells[J]. Oxid Med Cell Longev, 2021, 2021: 1783485. DOI: 10.1155/2021/1783485. |
[28] | Liu Z, Wang X, Li J, et al. Gambogenic acid induces cell death in human osteosarcoma through altering iron metabolism, disturbing the redox balance, and activating the P53 signaling pathway[J]. Chem Biol Interact, 2023, 382: 110602. DOI: 10.1016/j.cbi.2023.110602. |
[29] | Shi YH, Gong M, Deng ZM, et al. Tirapazamine suppress osteosarcoma cells in part through SLC7A11 mediated ferroptosis[J]. Biochem Biophys Res Commun, 2021, 567: 118-124. DOI: 10.1016/j.bbrc.2021.06.036. |
[30] | 石义华. 低氧环境下替拉扎明通过SLC7A11介导铁死亡的抗骨肉瘤作用与机制研究[D]. 武汉: 武汉大学, 2021. DOI: 10.27379/d.cnki.gwhdu.2021.001038. |
[31] | Gao L, Hua WZ, Tian LX, et al. Molecular mechanism of ferroptosis in orthopedic diseases[J]. Cells, 2022, 11(19): 2979. DOI: 10.3390/cells11192979. |
[32] | Lv HH, Zhen CX, Liu JY, et al. β-phenethyl isothiocyanate induces cell death in human osteosarcoma through altering iron metabolism, disturbing the redox balance, and activating the MAPK signaling pathway[J]. Oxid Med Cell Longev, 2020, 2020: 5021983. DOI: 10.1155/2020/5021983. |
[33] | Lv HH, Zhen CX, Liu JY, et al. PEITC triggers multiple forms of cell death by GSH-iron-ROS regulation in K7M2 murine osteosarcoma cells[J]. Acta Pharmacol Sin, 2020, 41(8): 1119-1132. DOI: 10.1038/s41401-020-0376-8. |
[34] | He T, Lin XH, Yang CH, et al. Theaflavin-3,3'-digallate plays a ROS-mediated dual role in ferroptosis and apoptosis via the MAPK pathway in human osteosarcoma cell lines and xenografts[J]. Oxid Med Cell Longev, 2022, 2022: 8966368. DOI: 10.1155/2022/8966368. |
[35] | 张佩. 紫铆查尔酮联合爱拉斯汀对骨肉瘤抑制及相关机制研究[D]. 长沙: 中南大学, 2022. DOI: 10.27661/d.cnki.gzhnu.2022.000701. |
[36] |
Lin HYI, Chen XT, Zhang CY, et al. EF24 induces ferroptosis in osteosarcoma cells through HMOX1[J]. Biomed Pharmacother, 2021, 136: 111202. DOI: 10.1016/j.biopha.2020.111202.
pmid: 33453607 |
[37] | Ren TH, Huang J, Sun W, et al. Zoledronic acid induces ferroptosis by reducing ubiquinone and promoting HMOX1 expression in osteosarcoma cells[J]. Front Pharmacol, 2022, 13: 1071946. DOI: 10.3389/fphar.2022.1071946. |
[1] | Wang Ying, Liu Nan, Guo Bing. Advances of antibody-drug conjugate in the therapy of metastatic breast cancer [J]. Journal of International Oncology, 2024, 51(6): 364-369. |
[2] | Yang Zhi, Lu Yiqiao, Gu Huayan, Ding Jialing, Guo Guilong. Research progress of tumor microenvironment mediated drug resistance in targeted therapy of breast cancer [J]. Journal of International Oncology, 2024, 51(4): 235-238. |
[3] | Wang Zihao, Wang Yu, Yang Xin, He Yi, Mo Xingkui, Yuan Tao. Research progress on the molecular mechanism and related treatments of ferroptosis in osteosarcoma [J]. Journal of International Oncology, 2024, 51(4): 239-244. |
[4] | Huang Hui, Ding Jianghua. Advances in targeting FGFR2 for treatment of advanced cholangiocarcinoma [J]. Journal of International Oncology, 2023, 50(9): 569-573. |
[5] | Li Qingshan, Xie Xin, Zhang Nan, Liu Shuai. Research progress on the application of combining radiotherapy and systemic therapy in breast cancer [J]. Journal of International Oncology, 2023, 50(6): 362-367. |
[6] | Liu Li, Zhu Siqi, Sun Mengying, He Jingdong. Progress of PARP inhibitors in targeted therapy of small cell lung cancer [J]. Journal of International Oncology, 2023, 50(6): 368-372. |
[7] | Liu Bohan, Huang Junxing. Research progress of solute carriers related genes in malignant tumors [J]. Journal of International Oncology, 2023, 50(5): 280-284. |
[8] | Zhu Jun, Huang Meijin, Li Yuan, Liu Zegang, Xun Xin, Chen Hong. Research progress on targeted therapy of breast cancer with low expression of HER2 [J]. Journal of International Oncology, 2023, 50(4): 236-240. |
[9] | Deng Lili, Duan Xingyu, Li Baozhong. Advances of anti-HER2 targeted drugs and combined therapeutic regimens for gastric and esophagogastic adenocarcinoma [J]. Journal of International Oncology, 2023, 50(12): 751-757. |
[10] | Liu Shaoping, Luo Hanchuan, Lin Shuhan, Luo Jiahui. Current status and research progress of interventional and systemic therapy for advanced hepatocellular carcinoma [J]. Journal of International Oncology, 2023, 50(12): 758-762. |
[11] | Jiang Shan, Xu Ximing. Recent progresses of targeted therapy and immunotherapy of hepatocellular carcinoma [J]. Journal of International Oncology, 2023, 50(11): 688-695. |
[12] | Jiang Shan, Xu Yangtao, Liu Xin, Chen Wenliang, Xu Ximing. Predictive value of baseline peripheral blood inflammatory biomarkers for prognosis in patients with advanced hepatocellular carcinoma treated with immunotherapy combined with targeted therapy [J]. Journal of International Oncology, 2023, 50(10): 600-607. |
[13] | Zhang Jingxian, Su Jianfei, Wei Xueqin, Yi Dan, Li Xiaojiang. Treatment status of non-small cell lung cancer with METexon14 skipping mutation [J]. Journal of International Oncology, 2023, 50(1): 37-41. |
[14] | Ma Xiaoping, Chang Junli, Sun Xingyuan, Yang Yanping. Study progression on mechanism of long non-coding RNAs regulating drug resistance in osteosarcoma [J]. Journal of International Oncology, 2023, 50(1): 51-54. |
[15] | Song Jia, Hu Qinyong. Application of TACE combined with molecular targeted therapy and immunotherapy in BCLC B/C hepatocellular carcinoma [J]. Journal of International Oncology, 2022, 49(9): 550-554. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||