Journal of International Oncology ›› 2024, Vol. 51 ›› Issue (4): 239-244.doi: 10.3760/cma.j.cn371439-20231229-00040
• Reviews • Previous Articles Next Articles
Wang Zihao, Wang Yu, Yang Xin, He Yi, Mo Xingkui, Yuan Tao()
Received:
2023-12-29
Revised:
2024-03-01
Online:
2024-04-08
Published:
2024-05-10
Contact:
Yuan Tao, Email:About author:
Wang Zihao and Wang Yu are contributed equally to the article
Supported by:
Wang Zihao, Wang Yu, Yang Xin, He Yi, Mo Xingkui, Yuan Tao. Research progress on the molecular mechanism and related treatments of ferroptosis in osteosarcoma[J]. Journal of International Oncology, 2024, 51(4): 239-244.
[1] | Lee JA, Lim J, Jin HY, et al. Osteosarcoma in adolescents and young adults[J]. Cells, 2021, 10(10): 2684. DOI: 10.3390/cells10102684. |
[2] | Cole S, Gianferante DM, Zhu B, et al. Osteosarcoma: a surveillance, epidemiology, and end results program-based analysis from 1975 to 2017[J]. Cancer, 2022, 128(11): 2107-2118. DOI: 10.1002/cncr.34163. |
[3] | Dos Santos AF, Fazeli G, Xavier da Silva TN, et al. Ferroptosis: mechanisms and implications for cancer development and therapy response[J]. Trends Cell Biol, 2023, 33(12): 1062-1076. DOI: 10.1016/j.tcb.2023.04.005. |
[4] | Liu X, Du SW, Wang SD, et al. Ferroptosis in osteosarcoma: a promising future[J]. Front Oncol, 2022, 12: 1031779. DOI: 10. 3389/fonc.2022.1031779. |
[5] | Lei T, Qian H, Lei PF, et al. Ferroptosis-related gene signature associates with immunity and predicts prognosis accurately in patients with osteosarcoma[J]. Cancer Sci, 2021, 112(11): 4785-4798. DOI: 10.1111/cas.15131. |
[6] | Chen WK, Li ZG, Yu NC, et al. Bone-targeting exosome nanoparticles activate Keap1/Nrf2/GPX4 signaling pathway to induce ferroptosis in osteosarcoma cells[J]. J Nanobiotechnology, 2023, 21(1): 355. DOI: 10.1186/s12951-023-02129-1. |
[7] | Hangauer MJ, Viswanathan VS, Ryan MJ, et al. Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition[J]. Nature, 2017, 551(7679): 247-250. DOI: 10.1038/nature24297. |
[8] | Rochette L, Dogon G, Rigal E, et al. Lipid peroxidation and iron metabolism: two corner stones in the homeostasis control of ferroptosis[J]. Int J Mol Sci, 2022, 24(1): 449. DOI: 10.3390/ijms24010449. |
[9] |
Guo WT, Wang X, Lu B, et al. Super-enhancer-driven MLX mediates redox balance maintenance via SLC7A11 in osteosarcoma[J]. Cell Death Dis, 2023, 14(7): 439. DOI: 10.1038/s41419-023-05966-y.
pmid: 37460542 |
[10] | Nie JB, Ling YH, Jin MC, et al. Butyrate enhances erastin-induced ferroptosis of osteosarcoma cells via regulating ATF3/SLC7A11 pathway[J]. Eur J Pharmacol, 2023, 957: 176009. DOI: 10.1016/j.ejphar.2023.176009. |
[11] |
Liu Q, Wang KZ. The induction of ferroptosis by impairing STAT3/Nrf2/GPx4 signaling enhances the sensitivity of osteosarcoma cells to cisplatin[J]. Cell Biol Int, 2019, 43(11): 1245-1256. DOI: 10.1002/cbin.11121.
pmid: 30811078 |
[12] | Kirtonia A, Sethi G, Garg M. The multifaceted role of reactive oxygen species in tumorigenesis[J]. Cell Mol Life Sci, 2020, 77(22): 4459-4483. DOI: 10.1007/s00018-020-03536-5. |
[13] | Gan BY. ACSL4, PUFA, and ferroptosis: new arsenal in anti-tumor immunity[J]. Signal Transduct Target Ther, 2022, 7(1): 128. DOI: 10.1038/s41392-022-01004-z. |
[14] | Qiu C, Liu TY, Luo D, et al. Novel therapeutic savior for osteosarcoma: the endorsement of ferroptosis[J]. Front Oncol, 2022, 12: 746030. DOI: 10.3389/fonc.2022.746030. |
[15] | Ge ZY, Song DL. A five ferroptosis-related genes risk score for prognostic prediction of osteosarcoma[J]. Medicine (Baltimore), 2022, 101(50): e32083. DOI: 10.1097/MD.0000000000032083. |
[16] |
Zhang YX, Li SY, Li FZ, et al. High-fat diet impairs ferroptosis and promotes cancer invasiveness via downregulating tumor suppressor ACSL4 in lung adenocarcinoma[J]. Biol Direct, 2021, 16(1): 10. DOI: 10.1186/s13062-021-00294-7.
pmid: 34053456 |
[17] |
Lee H, Zandkarimi F, Zhang YL, et al. Energy-stress-mediated AMPK activation inhibits ferroptosis[J]. Nat Cell Biol, 2020, 22(2): 225-234. DOI: 10.1038/s41556-020-0461-8.
pmid: 32029897 |
[18] | Zhu YR, Zhang XY, Wu QP, et al. PF-06409577 activates AMPK signaling and inhibits osteosarcoma cell growth[J]. Front Oncol, 2021, 11: 659181. DOI: 10.3389/fonc.2021.659181. |
[19] | Liu W, Zhao YC, Wang GF, et al. TRIM22 inhibits osteosarcoma progression through destabilizing Nrf2 and thus activation of ROS/AMPK/mTOR/autophagy signaling[J]. Redox Biol, 2022, 53: 102344. DOI: 10.1016/j.redox.2022.102344. |
[20] | Wang DY, Wu YN, Huang JQ, et al. Hippo/YAP signaling pathway is involved in osteosarcoma chemoresistance[J]. Chin J Cancer, 2016, 35: 47. DOI: 10.1186/s40880-016-0109-z. |
[21] | Battaglia AM, Chirillo R, Aversa I, et al. Ferroptosis and cancer: mitochondria meet the "iron maiden" cell death[J]. Cells, 2020, 9(6): 32575749. DOI: 10.3390/cells9061505. |
[22] | Han ST, Lin FY, Qi YC, et al. HO-1 contributes to luteolin-triggered ferroptosis in clear cell renal cell carcinoma via increasing the labile iron pool and promoting lipid peroxidation[J]. Oxid Med Cell Longev, 2022, 2022: 3846217. DOI: 10.1155/2022/3846217. |
[23] |
Li XJ, Liu JY. FANCD2 inhibits ferroptosis by regulating the JAK2/STAT3 pathway in osteosarcoma[J]. BMC Cancer, 2023, 23(1): 179. DOI: 10.1186/s12885-023-10626-7.
pmid: 36814203 |
[24] | Bersuker K, Hendricks JM, Li ZP, et al. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis[J]. Nature, 2019, 575(7784): 688-692. DOI: 10.1038/s41586-019-1705-2. |
[25] | Kraft VAN, Bezjian CT, Pfeiffer S, et al. GTP cyclohydrolase 1/tetrahydrobiopterin counteract ferroptosis through lipid remodeling[J]. ACS Cent Sci, 2020, 6(1): 41-53. DOI: 10.1021/acscentsci.9b01063. |
[26] | Mao C, Liu XG, Zhang YL, et al. DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer[J]. Nature, 2021, 593(7860): 586-590. DOI: 10.1038/s41586-021-03539-7. |
[27] | Luo Y, Gao X, Zou LT, et al. Bavachin induces ferroptosis through the STAT3/P53/SLC7A11 axis in osteosarcoma cells[J]. Oxid Med Cell Longev, 2021, 2021: 1783485. DOI: 10.1155/2021/1783485. |
[28] | Liu JY, Lou CG, Zhen CX, et al. Iron plays a role in sulfasalazine-induced ferroptosis with autophagic flux blockage in K7M2 osteosarcoma cells[J]. Metallomics, 2022, 14(5): mfac027. DOI: 10.1093/mtomcs/mfac027. |
[29] | Lv HH, Zhen CX, Liu JY, et al. β-Phenethyl isothiocyanate induces cell death in human osteosarcoma through altering iron metabolism, disturbing the redox balance, and activating the MAPK signaling pathway[J]. Oxid Med Cell Longev, 2020, 2020: 5021983. DOI: 10.1155/2020/5021983. |
[30] | Lv HH, Zhen CX, Liu JY, et al. PEITC triggers multiple forms of cell death by GSH-iron-ROS regulation in K7M2 murine osteosarcoma cells[J]. Acta Pharmacol Sin, 2020, 41(8): 1119-1132. DOI: 10.1038/s41401-020-0376-8. |
[31] | Fan Q, Zhan XL, Xiao ZM, et al. Phenethyl isothiocyanate enhances adriamycin-induced apoptosis in osteosarcoma cells[J]. Mol Med Rep, 2015, 12(4): 5945-5950. DOI: 10.3892/mmr.2015.4187. |
[32] |
De Vico G, Martano M, Maiolino PL, et al. Expression of transferrin receptor-1 (TFR-1) in canine osteosarcomas[J]. Vet Med Sci, 2020, 6(3): 272-276. DOI: 10.1002/vms3.258.
pmid: 32239803 |
[33] |
Salaroli R, Andreani G, Bernardini C, et al. Anticancer activity of an Artemisia annua L. hydroalcoholic extract on canine osteosarcoma cell lines[J]. Res Vet Sci, 2022, 152: 476-484. DOI: 10.1016/j.rvsc.2022.09.012.
pmid: 36156377 |
[34] | Chen M, Jiang YH, Sun YB. KDM4A-mediated histone demethy-lation of SLC7A11 inhibits cell ferroptosis in osteosarcoma[J]. Biochem Biophys Res Commun, 2021, 550: 77-83. DOI: 10.1016/j.bbrc.2021.02.137. |
[35] | Xu WN, Yang RZ, Zheng HL, et al. NDUFA4L2 regulated by HIF-1α promotes metastasis and epithelial-mesenchymal transition of osteosarcoma cells through inhibiting ROS production[J]. Front Cell Dev Biol, 2020, 8: 515051. DOI: 10.3389/fcell.2020.515051. |
[36] | 马小平, 常君丽, 孙星媛, 等. 长非编码RNA调控骨肉瘤耐药机制的研究进展[J]. 国际肿瘤学杂志, 2023, 50(1): 51-54. DOI: 10.3760/cma.j.cn371439-20221005-00010. |
[37] |
Liu YF, Zhang ZM, Li Q, et al. Mitochondrial APE1 promotes cisplatin resistance by downregulating ROS in osteosarcoma[J]. Oncol Rep, 2020, 44(2): 499-508. DOI: 10.3892/or.2020.7633.
pmid: 32627008 |
[38] | Zhang YN, Shen GH, Meng TT, et al. Eicosapentaenoic acid enhances the sensitivity of osteosarcoma to cisplatin by inducing ferroptosis through the DNA-PKcs/AKT/NRF2 pathway and reducing PD-L1 expression to attenuate immune evasion[J]. Int Immunopharmacol, 2023, 125(Pt B): 111181. DOI: 10.1016/j.intimp.2023.111181. |
[39] | Liu L, Geng H, Mei CJ, et al. Zoledronic acid enhanced the antitumor effect of cisplatin on orthotopic osteosarcoma by ROS-PI3K/Akt signaling and attenuated osteolysis[J]. Oxid Med Cell Longev, 2021, 2021: 6661534. DOI: 10.1155/2021/6661534. |
[40] | Tang Z, Dong H, Li T, et al. The synergistic reducing drug resistance effect of cisplatin and ursolic acid on osteosarcoma through a multistep mechanism involving ferritinophagy[J]. Oxid Med Cell Longev, 2021, 2021: 5192271. DOI: 10.1155/2021/5192271. |
[1] | Wang Peixin, Zhao Jun, Xu Shihong, Jiang Zhaoyang, Wang Xiaoqiang, Yang Hongjuan. Progress of ferroptosis-related mechanisms in osteosarcoma [J]. Journal of International Oncology, 2024, 51(5): 308-311. |
[2] | Liu Xiaojie, Huang Junxing. Research progress of NADPH oxidase 2 in malignant tumors [J]. Journal of International Oncology, 2023, 50(10): 618-621. |
[3] | Ma Xiaoping, Chang Junli, Sun Xingyuan, Yang Yanping. Study progression on mechanism of long non-coding RNAs regulating drug resistance in osteosarcoma [J]. Journal of International Oncology, 2023, 50(1): 51-54. |
[4] | Xiao Nan, Sun Pengfei. Research progress of oxidative stress in the sensitivity of chemoradiotherapy for gliomas [J]. Journal of International Oncology, 2022, 49(6): 357-361. |
[5] | Yang Ya, Ning Xiaofei, Li Bingliang, Yao Hui, Shan Changping, Lyu Min. Study on the mechanism of procyanidin mediated anti gastric cancer SNU-1 cell line by inducing the production of reactive oxygen species [J]. Journal of International Oncology, 2022, 49(5): 257-262. |
[6] | Zhou Renbang, Zhang Zhongchuan, Xu Zhiyuan, Zhu Xunbing. MiR-219a-5p inhibits the proliferation, invasion and migration of osteosarcoma U2OS cells by negatively regulating HMGA2 [J]. Journal of International Oncology, 2022, 49(4): 193-198. |
[7] | Zeng Yan, Luo Pan, Wang Ziqi, Wu Weili. Mechanism of drug induced ferroptosis in the treatment of head and neck tumors [J]. Journal of International Oncology, 2022, 49(3): 173-176. |
[8] | Zhou Xinyu, Jia Xiuhong. Research progress of ferroptosis in the treatment of leukemia [J]. Journal of International Oncology, 2022, 49(12): 759-762. |
[9] | Zhang Yongli, Zhang Ruojia, Fan Huancai, Ge Luna, Wang Lin. TXNDC5-Prx2 axis regulates drug resistance of prostate cancer cells [J]. Journal of International Oncology, 2021, 48(8): 473-478. |
[10] | Li Bingliang, Yang Ya, Huang Yingli, Si Wen, Li Xingwei, Zhang Yuanmin, Bian Jichao, Chen Yu. Effects of miR-20a-5p targeting KDM6B on the proliferation, migration and invasion of osteosarcoma cells [J]. Journal of International Oncology, 2021, 48(2): 65-73. |
[11] | Shi Yue, Li Shen, Feng Jifeng. Treatment options for colorectal cancer primary lesions with unresectable metastases at risk of acute abdomen [J]. Journal of International Oncology, 2021, 48(11): 693-697. |
[12] | Xu Yiyue, Zhao Shaorong, Liu Jingjing, Zhang Jin. Mechanisms of ferroptosis and its significance in breast cancer therapy [J]. Journal of International Oncology, 2020, 47(6): 372-376. |
[13] | Yang Yiting, Cheng Zhongping. The role of inflammatory cytokines in chemoresistance of epithelial ovarian cancer [J]. Journal of International Oncology, 2020, 47(4): 249-251. |
[14] | Yi Lin, Qiu Shi. Anti-tumor effect and mechanisms of shikonin on gliomas [J]. Journal of International Oncology, 2019, 46(8): 489-491. |
[15] | Yang Xiao1, Li Si2, Peng Jin3, Wang Lin4, Wu Yilun4, Feng Ying2. Effect of plasma membrane-associated sialidase NEU3 activity on the proliferation and apoptosis of osteosarcoma MG-63 cells [J]. Journal of International Oncology, 2019, 46(4): 193-198. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||