Journal of International Oncology ›› 2022, Vol. 49 ›› Issue (6): 357-361.doi: 10.3760/cma.j.cn371439-20220309-00068
• Reviews • Previous Articles Next Articles
Received:
2022-03-09
Revised:
2022-03-18
Online:
2022-06-08
Published:
2022-06-30
Contact:
Sun Pengfei
E-mail:ery_sunpf@lzu.edu.cn
Xiao Nan, Sun Pengfei. Research progress of oxidative stress in the sensitivity of chemoradiotherapy for gliomas[J]. Journal of International Oncology, 2022, 49(6): 357-361.
[1] |
Jiang T, Nam DH, Ram Z, et al. Clinical practice guidelines for the management of adult diffuse gliomas[J]. Cancer Lett, 2021, 499: 60-72. DOI: 10.1016/j.canlet.2020.10.050.
doi: 10.1016/j.canlet.2020.10.050 pmid: 33166616 |
[2] |
Sies H. Oxidative stress: concept and some practical aspects[J]. Antioxidants (Basel), 2020, 9(9): 852. DOI: 10.3390/antiox9090852.
doi: 10.3390/antiox9090852 |
[3] |
Moloney JN, Cotter TG. ROS signalling in the biology of cancer[J]. Semin Cell Dev Biol, 2018, 80: 50-64. DOI: 10.1016/j.semcdb.2017.05.023.
doi: 10.1016/j.semcdb.2017.05.023 |
[4] |
Olivier C, Oliver L, Lalier L, et al. Drug resistance in glioblastoma: the two faces of oxidative stress[J]. Front Mol Biosci, 2020, 7: 620677. DOI: 10.3389/fmolb.2020.620677.
doi: 10.3389/fmolb.2020.620677 |
[5] |
Srinivas US, Tan BWQ, Vellayappan BA, et al. ROS and the DNA damage response in cancer[J]. Redox Biol, 2019, 25: 101084. DOI: 10.1016/j.redox.2018.101084.
doi: 10.1016/j.redox.2018.101084 |
[6] |
Venere M, Hamerlik P, Wu Q, et al. Therapeutic targeting of constitutive PARP activation compromises stem cell phenotype and survival of glioblastoma-initiating cells[J]. Cell Death Differ, 2014, 21(2): 258-269. DOI: 10.1038/cdd.2013.136.
doi: 10.1038/cdd.2013.136 pmid: 24121277 |
[7] |
Sim HW, Galanis E, Khasraw M. PARP inhibitors in glioma: a review of therapeutic opportunities[J]. Cancers (Basel), 2022, 14(4): 1003. DOI: 10.3390/cancers14041003.
doi: 10.3390/cancers14041003 |
[8] |
Ghorai A, Mahaddalkar T, Thorat R, et al. Sustained inhibition of PARP-1 activity delays glioblastoma recurrence by enhancing radiation-induced senescence[J]. Cancer Lett, 2020, 490: 44-53. DOI: 10.1016/j.canlet.2020.06.023.
doi: S0304-3835(20)30353-0 pmid: 32645394 |
[9] |
Su LJ, Zhang JH, Gomez H, et al. Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis[J]. Oxid Med Cell Longev, 2019, 2019: 5080843. DOI: 10.1155/2019/5080843.
doi: 10.1155/2019/5080843 |
[10] |
Stockwell BR, Friedmann Angeli JP, Bayir H, et al. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease[J]. Cell, 2017, 171(2): 273-285. DOI: 10.1016/j.cell.2017.09.021.
doi: S0092-8674(17)31070-X pmid: 28985560 |
[11] |
Koppula P, Zhuang L, Gan B. Cystine transporter SLC7A11/xCT in cancer: ferroptosis, nutrient dependency, and cancer therapy[J]. Protein Cell, 2021, 12(8): 599-620. DOI: 10.1007/s13238-020-00789-5.
doi: 10.1007/s13238-020-00789-5 |
[12] |
Cheng J, Fan YQ, Liu BH, et al. ACSL 4 suppresses glioma cells proliferation via activating ferroptosis[J]. Oncol Rep, 2020, 43(1): 147-158. DOI: 10.3892/or.2019.7419.
doi: 10.3892/or.2019.7419 pmid: 31789401 |
[13] |
Magtanong L, Ko PJ, To M, et al. Exogenous monounsaturated fatty acids promote a ferroptosis-resistant cell state[J]. Cell Chem Biol, 2019, 26(3): 420-432. e9. DOI: 10.1016/j.chembiol.2018.11.016.
doi: S2451-9456(18)30438-0 pmid: 30686757 |
[14] |
Ye LF, Chaudhary KR, Zandkarimi F, et al. Radiation-induced lipid peroxidation triggers ferroptosis and synergizes with ferroptosis inducers[J]. ACS Chem Biol, 2020, 15(2): 469-484. DOI: 10.1021/acschembio.9b00939.
doi: 10.1021/acschembio.9b00939 |
[15] |
Alnajjar KS, Sweasy JB. A new perspective on oxidation of DNA repair proteins and cancer[J]. DNA Repair (Amst), 2019, 76: 60-69. DOI: 10.1016/j.dnarep.2019.02.006.
doi: 10.1016/j.dnarep.2019.02.006 |
[16] |
Hauck AK, Huang Y, Hertzel AV, et al. Adipose oxidative stress and protein carbonylation[J]. J Biol Chem, 2019, 294(4): 1083-1088. DOI: 10.1074/jbc.R118.003214.
doi: 10.1074/jbc.R118.003214 pmid: 30563836 |
[17] |
Moldogazieva NT, Lutsenko SV, Terentiev AA. Reactive oxygen and nitrogen species-induced protein modifications: implication in carcinogenesis and anticancer therapy[J]. Cancer Res, 2018, 78(21): 6040-6047. DOI: 10.1158/0008-5472.CAN-18-0980.
doi: 10.1158/0008-5472.CAN-18-0980 pmid: 30327380 |
[18] |
Vandenberk L, Garg AD, Verschuere T, et al. Irradiation of necrotic cancer cells, employed for pulsing dendritic cells (DCs), potentiates DC vaccine-induced antitumor immunity against high-grade glioma[J]. Oncoimmunology, 2015, 5(2): e1083669. DOI: 10.1080/2162402X.2015.1083669.
doi: 10.1080/2162402X.2015.1083669 |
[19] |
张永丽, 张若佳, 范焕彩, 等. TXNDC5-Prx2途径对前列腺癌细胞耐药性的调控[J]. 国际肿瘤学杂志, 2021, 48(8): 473-478. DOI: 10.3760/cma.j.cn371439-20210324-00090.
doi: 10.3760/cma.j.cn371439-20210324-00090 |
[20] |
Yao A, Storr SJ, Al-Hadyan K, et al. Thioredoxin system protein expression is associated with poor clinical outcome in adult and paediatric gliomas and medulloblastomas[J]. Mol Neurobiol, 2020, 57(7): 2889-2901. DOI: 10.1007/s12035-020-01928-z.
doi: 10.1007/s12035-020-01928-z |
[21] |
Jovanović M, Dragoj M, Zhukovsky D, et al. Novel TrxR1 inhibitors show potential for glioma treatment by suppressing the invasion and sensitizing glioma cells to chemotherapy[J]. Front Mol Biosci, 2020, 7: 586146. DOI: 10.3389/fmolb.2020.586146.
doi: 10.3389/fmolb.2020.586146 |
[22] |
Burić SS, Podolski-Renić A, Dinić J, et al. Modulation of antioxidant potential with coenzyme Q10 suppressed invasion of temozolomide-resistant rat glioma in vitro and in vivo[J]. Oxid Med Cell Longev, 2019, 2019: 3061607. DOI: 10.1155/2019/3061607.
doi: 10.1155/2019/3061607 |
[23] |
Frontiñán-Rubio J, Santiago-Mora RM, Nieva-Velasco CM, et al. Regulation of the oxidative balance with coenzyme Q10 sensitizes human glioblastoma cells to radiation and temozolomide[J]. Radiother Oncol, 2018, 128(2): 236-244. DOI: 10.1016/j.radonc.2018.04.033.
doi: S0167-8140(18)30240-8 pmid: 29784452 |
[24] |
Zhu Z, Du S, Du Y, et al. Glutathione reductase mediates drug resistance in glioblastoma cells by regulating redox homeostasis[J]. J Neurochem, 2018, 144(1): 93-104. DOI: 10.1111/jnc.14250.
doi: 10.1111/jnc.14250 |
[25] |
Zimta AA, Cenariu D, Irimie A, et al. The role of Nrf2 activity in cancer development and progression[J]. Cancers (Basel), 2019, 11(11): 1755. DOI: 10.3390/cancers11111755.
doi: 10.3390/cancers11111755 |
[26] |
Cockfield JA, Schafer ZT. Antioxidant defenses: a context-specific vulnerability of cancer cells[J]. Cancers (Basel), 2019, 11(8): 1208. DOI: 10.3390/cancers11081208.
doi: 10.3390/cancers11081208 |
[27] |
Wang J, Wang H, Sun K, et al. Chrysin suppresses proliferation, migration, and invasion in glioblastoma cell lines via mediating the ERK/Nrf2 signaling pathway[J]. Drug Des Devel Ther, 2018, 12: 721-733. DOI: 10.2147/DDDT.S160020.
doi: 10.2147/DDDT.S160020 |
[28] |
Liu Y, Lu Y, Celiku O, et al. Targeting IDH1-mutated malignancies with NRF2 blockade[J]. J Natl Cancer Inst, 2019, 111(10): 1033-1041. DOI: 10.1093/jnci/djy230.
doi: 10.1093/jnci/djy230 |
[29] |
Koppula P, Zhang Y, Zhuang L, et al. Amino acid transporter SLC7A11/xCT at the crossroads of regulating redox homeostasis and nutrient dependency of cancer[J]. Cancer Commun (Lond), 2018, 38(1): 12. DOI: 10.1186/s40880-018-0288-x.
doi: 10.1186/s40880-018-0288-x |
[30] |
Dąbrowska K, Skowrońska K, Popek M, et al. The role of Nrf2 transcription factor and Sp1-Nrf2 protein complex in glutamine transporter SN1 regulation in mouse cortical astrocytes exposed to ammonia[J]. Int J Mol Sci, 2021, 22(20): 11233. DOI: 10.3390/ijms222011233.
doi: 10.3390/ijms222011233 |
[31] |
Yu D, Liu Y, Zhou Y, et al. Triptolide suppresses IDH1-mutated malignancy via Nrf2-driven glutathione metabolism[J]. Proc Natl Acad Sci U S A, 2020, 117(18): 9964-9972. DOI: 10.1073/pnas.1913633117.
doi: 10.1073/pnas.1913633117 |
[32] |
Lei G, Zhang Y, Koppula P, et al. The role of ferroptosis in ionizing radiation-induced cell death and tumor suppression[J]. Cell Res, 2020, 30(2): 146-162. DOI: 10.1038/s41422-019-0263-3.
doi: 10.1038/s41422-019-0263-3 |
[33] |
Garcia CG, Kahn SA, Geraldo LHM, et al. combination therapy with sulfasalazine and valproic acid promotes human glioblastoma cell death through imbalance of the intracellular oxidative response[J]. Mol Neurobiol, 2018, 55(8): 6816-6833. DOI: 10.1007/s12035-018-0895-1.
doi: 10.1007/s12035-018-0895-1 |
[34] |
Toraih EA, El-Wazir A, Abdallah HY, et al. Deregulated microRNA signature following glioblastoma irradiation[J]. Cancer Control, 2019, 26(1): 1073274819847226. DOI: 10.1177/1073274819847226.
doi: 10.1177/1073274819847226 |
[35] |
Xu Z, Zeng X, Li M, et al. MicroRNA-383 promotes reactive oxygen species-induced autophagy via downregulating peroxiredoxin 3 in human glioma U87 cells[J]. Exp Ther Med, 2021, 21(5): 439. DOI: 10.3892/etm.2021.9870.
doi: 10.3892/etm.2021.9870 |
[36] |
Yang W, Shen Y, Wei J, et al. MicroRNA-153/Nrf-2/GPx1 pathway regulates radiosensitivity and stemness of glioma stem cells via reactive oxygen species[J]. Oncotarget, 2015, 6(26): 22006-22027. DOI: 10.18632/oncotarget.4292.
doi: 10.18632/oncotarget.4292 pmid: 26124081 |
[37] |
Chang M, Qiao L, Li B, et al. Suppression of SIRT6 by miR-33a facilitates tumor growth of glioma through apoptosis and oxidative stress resistance[J]. Oncol Rep, 2017, 38(2): 1251-1258. DOI: 10.3892/or.2017.5780.
doi: 10.3892/or.2017.5780 |
[1] | Qian Xiaotao, Shi Ziyi, Hu Ge, Wu Xiaowei. Efficacy of consolidation chemotherapy after radical radiotherapy and chemotherapy for stage Ⅲ-ⅣA esophageal squamous cell carcinoma: a real-world clinical study [J]. Journal of International Oncology, 2024, 51(6): 326-331. |
[2] | Yang Mi, Bie Jun, Zhang Jiayong, Deng Jiaxiu, Tang Zuge, Lu Jun. Analysis of the efficacy and prognosis of neoadjuvant therapy for locally advanced resectable esophageal cancer [J]. Journal of International Oncology, 2024, 51(6): 332-337. |
[3] | Liu Pingping, He Xuefang, Zhang Yi, Yang Xu, Zhang Shanshan, Ji Yifei. Risk factors of postoperative recurrence in patients with primary brain glioma and prediction model construction [J]. Journal of International Oncology, 2024, 51(4): 193-197. |
[4] | Wang Zihao, Wang Yu, Yang Xin, He Yi, Mo Xingkui, Yuan Tao. Research progress on the molecular mechanism and related treatments of ferroptosis in osteosarcoma [J]. Journal of International Oncology, 2024, 51(4): 239-244. |
[5] | Qian Xiaotao, Shi Ziyi, Hu Ge. A real-world clinical study of immunocheckpoint inhibitor maintenance therapy after radical radiotherapy and chemotherapy in stage Ⅲ-ⅣA esophageal squamous cell carcinoma [J]. Journal of International Oncology, 2024, 51(3): 151-156. |
[6] | Lyu Lu, Sun Pengfei. Gut flora and cervical cancer [J]. Journal of International Oncology, 2023, 50(6): 373-376. |
[7] | Radiation Oncology Treatment Physician Branch, Chinese Medical Doctor Association, Radiation Oncology Therapy Branch, Chinese Medical Association, Chinese Association of Radiation Therapy, China Anti-Cancer Association. Chinese experts' consensus on the application of pegylated recombinant human granulocyte colony-stimulating factor during concurrent chemoradiotherapy (2023 version) [J]. Journal of International Oncology, 2023, 50(4): 193-201. |
[8] | Zhao Yongrui, Gao Ying, Chen Yidong, Xu Jiankun. Efficacy and safety of linear accelerator-based fractionated stereotactic radiotherapy for small volume brain metastases [J]. Journal of International Oncology, 2023, 50(3): 138-143. |
[9] | Gong Heyi, Yi Yan, Zhang Jian, Li Baosheng. Management strategies for locally advanced operable esophageal carcinoma achieving clinical complete response after neoadjuvant chemoradiotherapy [J]. Journal of International Oncology, 2023, 50(12): 745-750. |
[10] | Liu Xiaojie, Huang Junxing. Research progress of NADPH oxidase 2 in malignant tumors [J]. Journal of International Oncology, 2023, 50(10): 618-621. |
[11] | Ma Xueyan, Lu Lili, Sun Pengfei. Advances in the immune microenvironment in cervical cancer [J]. Journal of International Oncology, 2023, 50(1): 47-50. |
[12] | Li Zhilei, Luo Jialin. Biological indexes for predicting sensitivity of preoperative concurrent chemoradiotherapy for locally advanced rectal cancer [J]. Journal of International Oncology, 2022, 49(9): 564-567. |
[13] | Wu Puyuan, Qi Liang, Wang Tao, Shi Minke, Sun Yuwei, Wang Lifeng, Liu Baorui, Yan Jing, Ren Wei. Efficacy of postoperative radiotherapy based on modified clinical target volume according to high-frequency recurrence regions in patients with esophageal squamous cell carcinoma [J]. Journal of International Oncology, 2022, 49(8): 464-472. |
[14] | Xia Lingling, Chen Yongshun, Li Bin, Ning Tingting, Zhang Caiyutian. Comparison of safety and efficacy between chemoradiotherapy and chemotherapy after R0 resection in pN+ esophageal squamous cell carcinoma patients [J]. Journal of International Oncology, 2022, 49(6): 334-339. |
[15] | Yang Ya, Ning Xiaofei, Li Bingliang, Yao Hui, Shan Changping, Lyu Min. Study on the mechanism of procyanidin mediated anti gastric cancer SNU-1 cell line by inducing the production of reactive oxygen species [J]. Journal of International Oncology, 2022, 49(5): 257-262. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||