Journal of International Oncology ›› 2022, Vol. 49 ›› Issue (4): 193-198.doi: 10.3760/cma.j.cn371439-20220303-00034
• Original Articles • Next Articles
Zhou Renbang1, Zhang Zhongchuan2, Xu Zhiyuan1, Zhu Xunbing2()
Received:
2022-03-03
Revised:
2022-03-20
Online:
2022-04-08
Published:
2022-05-11
Contact:
Zhu Xunbing
E-mail:Zhuxb22@163
Zhou Renbang, Zhang Zhongchuan, Xu Zhiyuan, Zhu Xunbing. MiR-219a-5p inhibits the proliferation, invasion and migration of osteosarcoma U2OS cells by negatively regulating HMGA2[J]. Journal of International Oncology, 2022, 49(4): 193-198.
"
基因名称 | 引物序列 |
---|---|
miR-219a-5p | 正向引物:5’-CGCGCCTGATTGTCCAAACGCAATTCT-3’ |
反向引物:5’-CTCAACTGGTGTCGTGGA-3’ | |
U6 | 正向引物:5’-GCTTCGGCAGCACATATACTAAAAT-3’ |
反向引物:5’-CGCTTCACGAATTTGCGTGTCAT-3’ | |
GAPDH | 正向引物:5’-CAAGGTCATCCATGACAACTTTG-3 |
反向引物:5’-GTCCACCACCCTGTTGCTGTAG-3’ | |
HMGA2 | 正向引物:5’-AGCTCAAAAGAAAGCAGAAG-3’ |
反向引物:5‘-CCCTTCAAAAGATCCAACTG-3’ |
[1] |
Zhang Q, Yin X, Zhang Y. MicroRNA-221 promotes cell proliferation and inhibits apoptosis in osteosarcoma cells by directly targeting FBXW11 and regulating Wnt signaling[J]. Arch Med Res, 2021, 52(2): 191-199. DOI: 10.1016/j.arcmed.2020.10.017.
doi: 10.1016/j.arcmed.2020.10.017 |
[2] |
Wu CC, Beird HC, Andrew Livingston J, et al. Immuno-genomic landscape of osteosarcoma[J]. Nat Commun, 2020, 11(1): 1008. DOI: 10.1038/s41467-020-14646-w.
doi: 10.1038/s41467-020-14646-w |
[3] |
Vasquez L, Silva J, Chavez S, et al. Prognostic impact of diagnostic and treatment delays in children with osteosarcoma[J]. Pediatr Blood Cancer, 2020, 67(4): e28180. DOI: 10.1002/pbc.28180.
doi: 10.1002/pbc.28180 |
[4] |
Sui MH, Zhang WW, Geng DM, et al. CircPRKCI regulates proliferation, migration and cycle of lung adenocarcinoma cells by targeting miR-219a-5p-regulated CAMK1D[J]. Eur Rev Med Pharmacol Sci, 2021, 25(4): 1899-1909. DOI: 10.26355/eurrev_202102_25085.
doi: 10.26355/eurrev_202102_25085 |
[5] |
Wang L, Luan T, Zhou S, et al. LncRNA HCP5 promotes triple negative breast cancer progression as a ceRNA to regulate BIRC3 by sponging miR-219a-5p[J]. Cancer Med, 2019, 8(9): 4389-4403. DOI: 10.1002/cam4.2335.
doi: 10.1002/cam4.2335 |
[6] |
Xing F, Song Z, He Y. MiR-219-5p inhibits growth and metastasis of ovarian cancer cells by targeting HMGA2[J]. Biol Res, 2018, 51(1): 50. DOI: 10.1186/s40659-018-0199-y.
doi: 10.1186/s40659-018-0199-y |
[7] |
Xu J, Fang X, Long L, et al. HMGA2 promotes breast cancer metastasis by modulating Hippo-YAP signaling pathway[J]. Cancer Biol Ther, 2021, 22(1): 5-11. DOI: 10.1080/15384047.2020.1832429.
doi: 10.1080/15384047.2020.1832429 |
[8] |
Mansoori B, Duijf PHG, Mohammadi A, et al. MiR-142-3p targets HMGA2 and suppresses breast cancer malignancy[J]. Life Sci, 2021, 276: 119431. DOI: 10.1016/j.lfs.2021.119431.
doi: 10.1016/j.lfs.2021.119431 |
[9] |
Zhong J, He C, Xu F, et al. Lupeol inhibits osteosarcoma progression by up-regulation of HMGA2 via regulating miR-212-3p[J]. J Orthop Surg Res, 2020, 15(1): 374. DOI: 10.1186/s13018-020-01879-0.
doi: 10.1186/s13018-020-01879-0 |
[10] |
Guo X, Shi J, Wen Y, et al. Increased high-mobility group A2 correlates with lymph node metastasis and prognosis of non-small cell lung cancer[J]. Cancer Biomark, 2018, 21(3): 547-555. DOI: 10.3233/CBM-170401.
doi: 10.3233/CBM-170401 |
[11] |
Namløs HM, Meza-Zepeda LA, Barøy T, et al. Modulation of the osteosarcoma expression phenotype by microRNAs[J]. PLoS One, 2012, 7(10): e48086. DOI: 10.1371/journal.pone.0048086.
doi: 10.1371/journal.pone.0048086 |
[12] |
李炳亮, 杨娅, 黄英丽, 等. miR-20a-5p靶向KDM6B对骨肉瘤细胞增殖、迁移和侵袭能力的影响[J]. 国际肿瘤学杂志, 2021, 48(2): 65-73. DOI: 10.3760/cma.j.cn371439-20201105-00013.
doi: 10.3760/cma.j.cn371439-20201105-00013 |
[13] |
Yao ZS, Li C, Liang D, et al. Diagnostic and prognostic implications of serum miR-101 in osteosarcoma[J]. Cancer Biomark. 2018, 22(1): 127-133. DOI: 10.3233/CBM-171103.
doi: 10.3233/CBM-171103 pmid: 29630525 |
[14] |
Gong T, Ning X, Deng Z, et al. Propofol-induced miR-219-5p inhibits growth and invasion of hepatocellular carcinoma through suppression of GPC3-mediated Wnt/β-catenin signalling activation[J]. J Cell Biochem, 2019, 120(10): 16934-16945. DOI: 10.1002/jcb.28952.
doi: 10.1002/jcb.28952 |
[15] |
Ma Q. MiR-219-5p suppresses cell proliferation and cell cycle progression in esophageal squamous cell carcinoma by targeting CCNA2[J]. Cell Mol Biol Lett, 2019, 24: 4. DOI: 10.1186/s11658-018-0129-6.
doi: 10.1186/s11658-018-0129-6 |
[16] |
Wei C, Zhang X, He S, et al. MicroRNA-219-5p inhibits the proliferation, migration, and invasion of epithelial ovarian cancer cells by targeting the Twist/Wnt/β-catenin signaling pathway[J]. Gene, 2017, 637: 25-32. DOI: 10.1016/j.gene.2017.09.012.
doi: 10.1016/j.gene.2017.09.012 |
[17] |
Huang WT, Zhang H, Jin Z, et al. MiR-219-5p inhibits prostate cancer cell growth and metastasis by targeting HMGA2[J]. Eur Rev Med Pharmacol Sci, 2020, 24(9): 4710-4718. DOI: 10.26355/eurrev_202005_21159.
doi: 10.26355/eurrev_202005_21159 |
[18] |
Zhang S, Mo Q, Wang X. Oncological role of HMGA2 (Review)[J]. Int J Oncol, 2019, 55(4): 775-788. DOI: 10.3892/ijo.2019.4856.
doi: 10.3892/ijo.2019.4856 |
[19] |
Binabaj MM, Soleimani A, Rahmani F, et al. Prognostic value of high mobility group protein A2 (HMGA2) over-expression in cancer progression[J]. Gene, 2019, 706: 131-139. DOI: 10.1016/j.gene.2019.04.088.
doi: S0378-1119(19)30453-6 pmid: 31055021 |
[20] |
Ma W, Xue N, Zhang J, et al. circUBAP2 regulates osteosarcoma progression via the miR-204-3p/HMGA2 axis[J]. Int J Oncol, 2021, 58(3): 298-311. DOI: 10.3892/ijo.2021.5178.
doi: 10.3892/ijo.2021.5178 |
[21] |
Chen Q, Fu Q, Pu L, et al. Effects of HMGA2 gene silencing on cell cycle and apoptosis in the metastatic renal carcinoma cell line ACHN[J]. J Int Med Res, 2022, 50(2): 3000605221075511. DOI: 10.1177/03000605221075511.
doi: 10.1177/03000605221075511 |
[22] |
Mito JK, Agoston AT, Dal Cin P, et al. Prevalence and significance of HMGA2 expression in oesophageal adenocarcinoma[J]. Histopathology, 2017, 71(6): 909-917. DOI: 10.1111/his.13310.
doi: 10.1111/his.13310 |
[1] | Wang Peixin, Zhao Jun, Xu Shihong, Jiang Zhaoyang, Wang Xiaoqiang, Yang Hongjuan. Progress of ferroptosis-related mechanisms in osteosarcoma [J]. Journal of International Oncology, 2024, 51(5): 308-311. |
[2] | Wang Zihao, Wang Yu, Yang Xin, He Yi, Mo Xingkui, Yuan Tao. Research progress on the molecular mechanism and related treatments of ferroptosis in osteosarcoma [J]. Journal of International Oncology, 2024, 51(4): 239-244. |
[3] | Ren Lu, Xie Xiaoli, Zhang Kun, Wang Lijuan. Effects and mechanisms of dihydroartemisinin combined with carfilzomib on the activity, proliferation, and apoptosis of multiple myeloma cells [J]. Journal of International Oncology, 2024, 51(3): 129-136. |
[4] | Gong Yan, Chen Honglei. Research progress on the mechanism of microRNA regulation of cisplatin resistance in ovarian cancer [J]. Journal of International Oncology, 2024, 51(3): 186-190. |
[5] | Xiang Yuling, Tan Jiajie, Xiong Yuanguo, Zhao Lirong, Li Chen, Zhang Hong. Effects of Anhydroicaritin on the proliferation, migration and apoptosis of hepatocellular carcinoma cells [J]. Journal of International Oncology, 2023, 50(9): 513-519. |
[6] | Zhang Jinnan, Liu Bangqing, Li Jun, Liu Xiaohui. Research on BHLHE40 targets HMGA2 to reduce the sensitivity of thyroid cancer cells to cisplatin through activating the oxidative phosphorylation pathway [J]. Journal of International Oncology, 2023, 50(7): 398-406. |
[7] | Quan Zhenhao, Xu Feipeng, Huang Zhe, Huang Xianjin, Chen Rihong, Sun Kaiyu, Hu Xu, Lin Lin. lncRNA FTX silencing inhibits gastric cancer cell proliferation through the miR-22-3p/NLRP3 inflammasome pathway [J]. Journal of International Oncology, 2023, 50(4): 202-207. |
[8] | Ma Xiaoping, Chang Junli, Sun Xingyuan, Yang Yanping. Study progression on mechanism of long non-coding RNAs regulating drug resistance in osteosarcoma [J]. Journal of International Oncology, 2023, 50(1): 51-54. |
[9] | Lian Haiwei, Yang Shuorui, Liu Renzhong. Mechanism study on regulation of glioblastoma cell proliferation and apoptosis by sciadopitysin combined with CX-4945 through Notch1 pathway [J]. Journal of International Oncology, 2022, 49(6): 321-326. |
[10] | Laibijiang Wusiman, Cao Bowei, Zhang Wenbin, Gao Hua. Effects of exogenous AGR2 on the proliferation and invasion abilities of colon cancer cells [J]. Journal of International Oncology, 2022, 49(2): 73-78. |
[11] | Jin Jiahui, Chen Cunhai, Ma Xuezhen. Effects of radiation-associated miRNA in radiotherapy for breast cancer [J]. Journal of International Oncology, 2022, 49(12): 735-738. |
[12] | Jing Wenjun, Zhao Wenwen, Feng Qingqing, Zhao Wenfei, Zhao Lili, Zhang Xue, Wei Hongmei. Molecular basis and clinical prospect of the miR-34 family for the treatment of gastric cancer [J]. Journal of International Oncology, 2022, 49(11): 681-686. |
[13] | Luo Liyun, Lai Canhui, Liang Renpei, Yang Aiwu, Lin Zhimin. Correlation between the expressions of miR-524-5p and SOX9 in advanced gastric cancer and their influences on chemotherapy efficacy and prognosis [J]. Journal of International Oncology, 2022, 49(1): 45-50. |
[14] | Hong Anlan, Cao Meng, Wang Yan, Fang Fang. Research progress on lncRNAs as members of ceRNA network in melanoma [J]. Journal of International Oncology, 2022, 49(1): 61-64. |
[15] | Zhang Yongli, Zhang Ruojia, Fan Huancai, Ge Luna, Wang Lin. TXNDC5-Prx2 axis regulates drug resistance of prostate cancer cells [J]. Journal of International Oncology, 2021, 48(8): 473-478. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||