Journal of International Oncology ›› 2024, Vol. 51 ›› Issue (3): 129-136.doi: 10.3760/cma.j.cn371439-20231130-00021
• Original Articles • Previous Articles Next Articles
Ren Lu1,2, Xie Xiaoli2,3, Zhang Kun4, Wang Lijuan2,3,5()
Received:
2023-11-30
Revised:
2024-01-15
Online:
2024-03-08
Published:
2024-04-10
Contact:
Wang Lijuan, Email: Supported by:
Ren Lu, Xie Xiaoli, Zhang Kun, Wang Lijuan. Effects and mechanisms of dihydroartemisinin combined with carfilzomib on the activity, proliferation, and apoptosis of multiple myeloma cells[J]. Journal of International Oncology, 2024, 51(3): 129-136.
[1] |
Kumar SK, Rajkumar V, Kyle RA, et al. Multiple myeloma[J]. Nat Rev Dis Primers, 2017, 3: 17046. DOI: 10.1038/nrdp.2017.46.
pmid: 28726797 |
[2] | 王盼盼, 朱登勤, 杨晓煜. 多发性骨髓瘤发病机制及治疗的研究进展[J]. 中国医学创新, 2023, 20(13): 164-168. DOI: 10.3969/j.issn.1674-4985.2023.13.040. |
[3] | 卢静, 杜鹃. 多发性骨髓瘤靶向新药研究进展[J]. 药学进展, 2022, 46(6): 435-446. |
[4] | Solimando AG, Krebs M, Desantis V, et al. Breaking through multiple myeloma: a paradigm for a comprehensive tumor ecosystem targeting[J]. Biomedicines, 2023, 11(7): 2087. DOI: 10.3390/biomedici-nes11072087. |
[5] |
Liu X, Cao J, Huang G, et al. Biological activities of artemisinin derivatives beyond malaria[J]. Curr Top Med Chem, 2019, 19(3): 205-222. DOI: 10.2174/1568026619666190122144217.
pmid: 30674260 |
[6] | Wang SJ, Gao Y, Chen H, et al. Dihydroartemisinin inactivates NF-κ B and potentiates the anti-tumor effect of gemcitabine on pancreatic cancer both in vitro and in vivo[J]. Cancer Lett, 2010, 293(1): 99-108. DOI: 10.1016/j.canlet.2010.01.001. |
[7] |
Li Y, Lu J, Chen Q, et al. Artemisinin suppresses hepatocellular carcinoma cell growth, migration and invasion by targeting cellular bioenergetics and Hippo-YAP signaling[J]. Arch Toxicol, 2019, 93(11): 3367-3383. DOI: 10.1007/s00204-019-02579-3.
pmid: 31563988 |
[8] | 沈敬堃, 朱海涛, 梅珈彬, 等. 地高辛和他莫昔芬协同抑制乳腺癌MCF-7细胞的增殖、迁移和侵袭[J]. 中国药理学通报, 2021, 37(9): 1256-1263. DOI: 10.3969/j.issn.1001-1978.2021.09.013. |
[9] | Mereu E, Abbo D, Paradzik T, et al. Euchromatic histone lysine methyltransferase 2 inhibition enhances carfilzomib sensitivity and overcomes drug resistance in multiple myeloma cell lines[J]. Cancers (Basel), 2023, 15(8): 2199. DOI: 10.3390/cancers15082199. |
[10] |
Herndon TM, Deisseroth A, Kaminskas E, et al. Food and Drug Administration approval: carfilzomib for the treatment of multiple myeloma[J]. Clin Cancer Res, 2013, 19(17): 4559-4563. DOI: 10.1158/1078-0432.CCR-13-0755.
pmid: 23775332 |
[11] |
He S, Tian W, Zhao J, Gong R, et al. Carfilzomib inhibits the proliferation and apoptosis of multiple myeloma cells by inhibiting STAT1/COX-2/iNOS signaling pathway[J]. Transl Cancer Res, 2022, 11(1): 206-216. DOI: 10.21037/tcr-21-2534.
pmid: 35261897 |
[12] |
Salem K, Brown CO, Schibler J, et al. Combination chemotherapy increases cytotoxicity of multiple myeloma cells by modification of nuclear factor (NF)-κB activity[J]. Exp Hematol, 2013, 41(2): 209-218. DOI: 10.1016/j.exphem.2012.10.002.
pmid: 23063726 |
[13] | Qiang YW, Ye S, Huang Y, et al. MAFb protein confers intrinsic resistance to proteasome inhibitors in multiple myeloma[J]. BMC Cancer, 2018, 18(1): 724. DOI: 10.1186/s12885-018-4602-4. |
[14] |
Gong Y, Gallis BM, Goodlett DR, et al. Effects of transferrin conjugates of artemisinin and artemisinin dimer on breast cancer cell lines[J]. Anticancer Res, 2013, 33(1): 123-132.
pmid: 23267137 |
[15] |
Efferth T. Molecular pharmacology and pharmacogenomics of arte-misinin and its derivatives in cancer cells[J]. Curr Drug Targets, 2006, 7(4): 407-421. DOI: 10.2174/138945006776359412.
pmid: 16611029 |
[16] |
Lucibello M, Adanti S, Antelmi E, et al. Phospho-TCTP as a therapeutic target of dihydroartemisinin for aggressive breast cancer cells[J]. Oncotarget, 2015, 6(7): 5275-5291. DOI: 10.18632/oncotarget.2971.
pmid: 25779659 |
[17] | Allegra A, Speciale A, Molonia MS, et al. Curcumin ameliorates the in vitro efficacy of carfilzomib in human multiple myeloma U266 cells targeting p53 and NF- κ B pathways[J]. Toxicol In Vitro, 2018, 47: 186-194. DOI: 10.1016/j.tiv.2017.12.001. |
[18] | Ma Q, Liao H, Xu L, et al. Autophagy-dependent cell cycle arrest in esophageal cancer cells exposed to dihydroartemisinin[J]. Chin Med, 2020, 15: 37. DOI: 10.1186/s13020-020-00318-w. |
[19] | Kiraz Y, Adan A, Kartal Yandim M, et al. Major apoptotic mechanisms and genes involved in apoptosis[J]. Tumour Biol, 2016, 37(7): 8471-8486. DOI: 10.1007/s13277-016-5035-9. |
[20] |
Cory S, Adams JM. The Bcl2 family: regulators of the cellular life-or-death switch[J]. Nat Rev Cancer, 2002, 2(9): 647-656. DOI: 10.1038/nrc883.
pmid: 12209154 |
[21] |
Elmore S. Apoptosis: a review of programmed cell death[J]. Toxicol Pathol, 2007, 35(4): 495-516. DOI: 10.1080/01926230701320337.
pmid: 17562483 |
[22] | 陈光华, 魏莹, 舒波. 鱼腥草总黄酮调控PI3K/Akt信号通路诱导人乳腺癌细胞株MCF-7凋亡的实验研究[J]. 中国医院药学杂志, 2020, 40(4): 391-396. DOI: 10.13286/j.1001-5213.2020.04.07. |
[23] | Li YN, Ning N, Song L, et al. Derivatives of deoxypodophyllotoxin induce apoptosis through Bcl-2/Bax proteins expression[J]. Anticancer Agents Med Chem, 2021, 21(5): 611-620. DOI: 10.2174/1871520620999200730160952. |
[24] |
Li S, Wei P, Zhang B, et al. Apoptosis of lung cells regulated by mitochondrial signal pathway in crotonaldehyde-induced lung injury[J]. Environ Toxicol, 2020, 35(11): 1260-1273. DOI: 10.1002/tox.22991.
pmid: 32639093 |
[25] |
Levine AJ. p53: 800 million years of evolution and 40 years of discovery[J]. Nat Rev Cancer, 2020, 20(8): 471-480. DOI: 10.1038/s41568-020-0262-1.
pmid: 32404993 |
[26] |
Wei H, Qu L, Dai S, et al. Structural insight into the molecular mechanism of p53-mediated mitochondrial apoptosis[J]. Nat Commun, 2021, 12(1): 2280. DOI: 10.1038/s41467-021-22655-6.
pmid: 33863900 |
[27] | 崔兴, 孙润洁, 王庆松. 桂枝茯苓胶囊通过线粒体途径对骨髓瘤细胞凋亡的影响[J]. 中华中医药杂志, 2022, 37(3): 1395-1400. |
[1] | Zhang Keping, Zhao Yongsheng, Yang Juan, Fu Maoyong. Chlorogenic acid induces mitochondrial dysfunction in lung cancer A549 cells by inhibiting the PI3K-Akt pathway [J]. Journal of International Oncology, 2024, 51(1): 21-28. |
[2] | Xiang Yuling, Tan Jiajie, Xiong Yuanguo, Zhao Lirong, Li Chen, Zhang Hong. Effects of Anhydroicaritin on the proliferation, migration and apoptosis of hepatocellular carcinoma cells [J]. Journal of International Oncology, 2023, 50(9): 513-519. |
[3] | Feng Dongxu, Wu Wei, Gao Pingfa, Wang Jun, Shi Lijuan, Chen Dawei, Li Wenbing, Zhang Meifeng. Effects of miR-451 on glycolysis and apoptosis of breast cancer cells by regulating Rho/ROCK1 pathway [J]. Journal of International Oncology, 2023, 50(8): 449-456. |
[4] | Wu Jiali, Zhang Jiahui, Zhang Ping, Xiao Xinyue, Li Rui, Zhang Hongyu. Mechanism of Bcl-2 BH4 selective inhibitor BDA-366 on NK/T cell lymphoma cells [J]. Journal of International Oncology, 2023, 50(7): 413-418. |
[5] | Yang Ya, Wang Huili, Liu Yan, Guo Jinfeng, Wang Chunxia, Lyu Min, Shan Changping. Effects of GCSH gene on proliferation and apoptosis of gastric cancer SNU-1 cells [J]. Journal of International Oncology, 2023, 50(5): 257-262. |
[6] | Quan Zhenhao, Xu Feipeng, Huang Zhe, Huang Xianjin, Chen Rihong, Sun Kaiyu, Hu Xu, Lin Lin. lncRNA FTX silencing inhibits gastric cancer cell proliferation through the miR-22-3p/NLRP3 inflammasome pathway [J]. Journal of International Oncology, 2023, 50(4): 202-207. |
[7] | Zhang Yuxiao, Zhang Liansheng, Li Lijuan. Research status and application prospect of a novel immune checkpoint TIGIT in the immunotherapy of multiple myeloma [J]. Journal of International Oncology, 2023, 50(2): 122-125. |
[8] | Zhu Yi, Chen Jian. Mechanism of hydrogen sulfide in tumorigenesis and development and its donor-mediated anti-tumor effects [J]. Journal of International Oncology, 2023, 50(12): 729-733. |
[9] | Zhao Jianhao, Duan Yanchao. Research progress in the pathogenesis of extramedullary disease in multiple myeloma [J]. Journal of International Oncology, 2023, 50(1): 55-59. |
[10] | Lian Haiwei, Yang Shuorui, Liu Renzhong. Mechanism study on regulation of glioblastoma cell proliferation and apoptosis by sciadopitysin combined with CX-4945 through Notch1 pathway [J]. Journal of International Oncology, 2022, 49(6): 321-326. |
[11] | Yang Ya, Ning Xiaofei, Li Bingliang, Yao Hui, Shan Changping, Lyu Min. Study on the mechanism of procyanidin mediated anti gastric cancer SNU-1 cell line by inducing the production of reactive oxygen species [J]. Journal of International Oncology, 2022, 49(5): 257-262. |
[12] | Gao Shan, Lu Minqiu, Shi Lei, Chu Bin, Fang Lijuan, Xiang Qiuqing, Wang Yutong, Ding Yuehua, Bao Li. Clinical efficacy and safety of ixazomib-based therapy in the treatment of relapsed or refractory multiple myeloma [J]. Journal of International Oncology, 2022, 49(5): 286-291. |
[13] | Zhou Renbang, Zhang Zhongchuan, Xu Zhiyuan, Zhu Xunbing. MiR-219a-5p inhibits the proliferation, invasion and migration of osteosarcoma U2OS cells by negatively regulating HMGA2 [J]. Journal of International Oncology, 2022, 49(4): 193-198. |
[14] | Laibijiang Wusiman, Cao Bowei, Zhang Wenbin, Gao Hua. Effects of exogenous AGR2 on the proliferation and invasion abilities of colon cancer cells [J]. Journal of International Oncology, 2022, 49(2): 73-78. |
[15] | Zhang Yongli, Zhang Ruojia, Fan Huancai, Ge Luna, Wang Lin. TXNDC5-Prx2 axis regulates drug resistance of prostate cancer cells [J]. Journal of International Oncology, 2021, 48(8): 473-478. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||