
Journal of International Oncology ›› 2022, Vol. 49 ›› Issue (11): 681-686.doi: 10.3760/cma.j.cn371439-20220927-00134
• Reviews • Previous Articles Next Articles
					
													Jing Wenjun1, Zhao Wenwen2, Feng Qingqing2, Zhao Wenfei2, Zhao Lili3, Zhang Xue2, Wei Hongmei2(
)
												  
						
						
						
					
				
Received:2022-09-27
															
							
																	Revised:2022-10-17
															
							
															
							
																	Online:2022-11-08
															
							
																	Published:2022-12-06
															
						Contact:
								Wei Hongmei   
																	E-mail:13001776675@163.com
																					Supported by:Jing Wenjun, Zhao Wenwen, Feng Qingqing, Zhao Wenfei, Zhao Lili, Zhang Xue, Wei Hongmei. Molecular basis and clinical prospect of the miR-34 family for the treatment of gastric cancer[J]. Journal of International Oncology, 2022, 49(11): 681-686.
| [1] |  
											 Cao W, Chen HD, Yu YW, et al.  Changing profiles of cancer burden worldwide and in China: a secondary analysis of the global cancer statistics 2020[J]. Chin Med J (Engl), 2021, 134(7): 783-791. DOI: 10.1097/CM9.0000000000001474. 
																							 doi: 10.1097/CM9.0000000000001474  | 
										
| [2] |  
											 Chung HC, Bang YJ, S Fuchs C, et al.  First-line pembrolizumab/placebo plus trastuzumab and chemotherapy in HER2-positive advanced gastric cancer: KEYNOTE-811[J]. Future Oncol, 2021, 17(5): 491-501. DOI: 10.2217/fon-2020-0737. 
																							 doi: 10.2217/fon-2020-0737 pmid: 33167735  | 
										
| [3] |  
											 Janjigian YY, Shitara K, Moehler M, et al.  First-line nivolumab plus chemotherapy versus chemotherapy alone for advanced gastric, gastro-oesophageal junction, and oesophageal adenocarcinoma (CheckMate 649): a randomised, open-label, phase 3 trial[J]. Lancet, 2021, 398(10294): 27-40. DOI: 10.1016/S0140-6736(21)00797-2. 
																							 doi: 10.1016/S0140-6736(21)00797-2 pmid: 34102137  | 
										
| [4] |  
											 徐惠绵, 潘四维. 胃癌诊治研究进展2021年度盘点[J]. 肿瘤学杂志, 2022, 28(2): 81-85. DOI: 10.11735/j.issn.1671-170X.2022.02.B001. 
																							 doi: 10.11735/j.issn.1671-170X.2022.02.B001  | 
										
| [5] |  
											 Liu G, Jiang C, Li D, et al.  MiRNA-34a inhibits EGFR-signaling-dependent MMP7 activation in gastric cancer[J]. Tumour Biol, 2014, 35(10): 9801-9806. DOI: 10.1007/s13277-014-2273-6. 
																							 doi: 10.1007/s13277-014-2273-6  | 
										
| [6] |  
											 Mirzajani E, Vahidi S, Norollahi SE, et al.  Novel biomarkers of microRNAs in gastric cancer: an overview from diagnosis to treatment[J]. Microrna, 2022, 11(1): 12-24. DOI: 10.2174/2211536611666220322160242. 
																							 doi: 10.2174/2211536611666220322160242  | 
										
| [7] |  
											 Xiong S, Hu M, Li C, et al.  Role of miR‑34 in gastric cancer: from bench to bedside (review)[J]. Oncol Rep, 2019, 42(5): 1635-1646. DOI: 10.3892/or.2019.7280. 
																							 doi: 10.3892/or.2019.7280 pmid: 31432176  | 
										
| [8] |  
											 Bonetti P, Climent M, Panebianco F, et al.  Dual role for miR-34a in the control of early progenitor proliferation and commitment in the mammary gland and in breast cancer[J]. Oncogene, 2019, 38(3): 360-374. DOI: 10.1038/s41388-018-0445-3. 
																							 doi: 10.1038/s41388-018-0445-3 pmid: 30093634  | 
										
| [9] |  
											 Krajewska JB, Fichna J, Mosińska P. One step ahead: miRNA-34 in colon cancer-future diagnostic and therapeutic tool?[J]. Crit Rev Oncol Hematol, 2018(132): 1-8. DOI: 10.1016/j.critrevonc.2018.09.006. 
																							 doi: 10.1016/j.critrevonc.2018.09.006  | 
										
| [10] |  
											 Shi L, Wang Z, Geng X, et al.  Exosomal miRNA-34 from cancer-associated fibroblasts inhibits growth and invasion of gastric cancer cells in vitro and in vivo[J]. Aging (Albany NY), 2020, 12(9): 8549-8564. DOI: 10.18632/aging.103157. 
																							 doi: 10.18632/aging.103157  | 
										
| [11] |  
											 Wang H, Wang F, Wang X, et al.  Friend or foe: a cancer suppressor microRNA-34 potentially plays an adverse role in vascular diseases by regulating cell apoptosis and extracellular matrix degradation[J]. Med Sci Monit, 2019, 25: 1952-1959. DOI: 10.12659/MSM.915270. 
																							 doi: 10.12659/MSM.915270  | 
										
| [12] |  
											 Wang B, Li D, Kovalchuk I, et al.  miR-34a directly targets tRNAiMet precursors and affects cellular proliferation, cell cycle, and apoptosis[J]. Proc Natl Acad Sci U S A, 2018, 115(28): 7392-7397. DOI: 10.1073/pnas.1703029115. 
																							 doi: 10.1073/pnas.1703029115 pmid: 29941603  | 
										
| [13] |  
											 Zhang L, Wang L, Dong D, et al.  MiR-34b/c-5p and the neurokinin-1 receptor regulate breast cancer cell proliferation and apoptosis[J]. Cell Prolif, 2019, 52(1): e12527. DOI: 10.1111/cpr.12527. 
																							 doi: 10.1111/cpr.12527  | 
										
| [14] |  
											 Xi L, Zhang Y, Kong S, et al.  miR-34 inhibits growth and promotes apoptosis of osteosarcoma in nude mice through targetly regulating TGIF2 expression[J]. Biosci Rep, 2018, 38(3): BSR20180078. DOI: 10.1042/BSR20180078. 
																							 doi: 10.1042/BSR20180078  | 
										
| [15] |  
											 Zhang L, Liao Y, Tang L. MicroRNA-34 family: a potential tumor suppressor and therapeutic candidate in cancer[J]. J Exp Clin Cancer Res, 2019, 38(1): 53. DOI: 10.1186/s13046-019-1059-5. 
																							 doi: 10.1186/s13046-019-1059-5  | 
										
| [16] |  
											 Jafari N, Abediankenari S. MicroRNA-34 dysregulation in gastric cancer and gastric cancer stem cell[J]. Tumour Biol, 2017, 39(5): 1010428317701652. DOI: 10.1177/1010428317701652. 
																							 doi: 10.1177/1010428317701652  | 
										
| [17] |  
											 Imani S, Wu RC, Fu J. MicroRNA-34 family in breast cancer: from research to therapeutic potential[J]. J Cancer, 2018, 9(20): 3765-3775. DOI: 10.7150/jca.25576. 
																							 doi: 10.7150/jca.25576 pmid: 30405848  | 
										
| [18] |  
											 李可心. IGF2BP3在食管鳞癌和结直肠癌中的作用及机制研究[D]. 北京: 北京协和医学院, 2020. DOI: 10.27648/d.cnki.gzxhu.2020.000169. 
																							 doi: 10.27648/d.cnki.gzxhu.2020.000169  | 
										
| [19] |  
											 Zhou Y, Huang T, Siu HL, et al.  IGF2BP3 functions as a potential oncogene and is a crucial target of miR-34a in gastric carcinoge-nesis[J]. Mol Cancer, 2017, 16(1): 77. DOI: 10.1186/s12943-017-0647-2. 
																							 doi: 10.1186/s12943-017-0647-2  | 
										
| [20] | 李可心, 黄常志. IGF2BP3在肿瘤中作用的研究进展[C]// 中国生物化学与分子生物学会2019年全国学术会议暨学会成立四十周年论文集, 太原: 中国生物化学与分子生物学会, 2019: 91. | 
| [21] |  
											 符白玉, 林怡, 徐琪, 等. 胃癌患者血清p53、PDCD-5、survivin表达水平及其联合应用的价值[J]. 分子诊断与治疗杂志, 2021, 13(4): 615-618, 622. DOI: 10.3969/j.issn.1674-6929.2021.04.027. 
																							 doi: 10.3969/j.issn.1674-6929.2021.04.027  | 
										
| [22] |  
											 Kim WJ, Kim W, Bae JM, et al.  Dehydroabietic acid is a novel survivin inhibitor for gastric cancer[J]. Plants (Basel), 2021, 10(6): 1047. DOI: 10.3390/plants10061047. 
																							 doi: 10.3390/plants10061047  | 
										
| [23] |  
											 Wheatley SP, Altieri DC. Survivin at a glance[J]. J Cell Sci, 2019, 132(7): jcs223826. DOI: 10.1242/jcs.223826. 
																							 doi: 10.1242/jcs.223826  | 
										
| [24] |  
											 姚学权, 刘福坤, 祁晓萍, 等. 胃腺癌组织survivin基因的表达与细胞增殖及凋亡的相关性研究[J]. 中华外科杂志, 2004, 42(3): 145-148. DOI: 10.3760/j:issn:0529-5815.2004.03.005. 
																							 doi: 10.3760/j:issn:0529-5815.2004.03.005  | 
										
| [25] |  
											 Sun XP, Dong X, Lin L, et al.  Up-regulation of survivin by AKT and hypoxia-inducible factor 1α contributes to cisplatin resistance in gastric cancer[J]. FEBS J, 2014, 281(1): 115-128. DOI: 10.1111/febs.12577. 
																							 doi: 10.1111/febs.12577  | 
										
| [26] |  
											 Ji Q, Hao X, Meng Y, et al.  Restoration of tumor suppressor miR-34 inhibits human p53-mutant gastric cancer tumorspheres[J]. BMC Cancer, 2008, 8: 266. DOI: 10.1186/1471-2407-8-266. 
																							 doi: 10.1186/1471-2407-8-266 pmid: 18803879  | 
										
| [27] |  
											 Hong DS, Kang YK, Borad M, et al.  Phase 1 study of MRX34, a liposomal miR-34a mimic, in patients with advanced solid tumours[J]. Br J Cancer, 2020, 122(11): 1630-1637. DOI: 10.1038/s41416-020-0802-1. 
																							 doi: 10.1038/s41416-020-0802-1  | 
										
| [28] |  
											 Shen Z, Zhan G, Ye D, et al.  MicroRNA-34a affects the occurrence of laryngeal squamous cell carcinoma by targeting the antiapoptotic gene survivin[J]. Med Oncol, 2012, 29(4): 2473-2480. DOI: 10.1007/s12032-011-0156-x. 
																							 doi: 10.1007/s12032-011-0156-x pmid: 22246523  | 
										
| [29] |  
											 Than VT, Tran HTT, Ly DV, et al.  Bioinformatic identification and expression analysis of the chicken B cell lymphoma (BCL) gene[J]. Genes Genomics, 2019, 41(10): 1195-1206. DOI: 10.1007/s13258-019-00849-z. 
																							 doi: 10.1007/s13258-019-00849-z  | 
										
| [30] |  
											 方宇, 王琳玲, 王海娟, 等. Survivin、 Bcl-2在胃癌组织中的表达及临床意义[J]. 肿瘤药学, 2021, 11(4): 474-479. DOI: 10.3969/j.issn.2095-1264.2021.04.14. 
																							 doi: 10.3969/j.issn.2095-1264.2021.04.14  | 
										
| [31] |  
											 杨百仞. miR-34a/miR-335对survivin的表达调控及在胃癌中的生物功能学研究[D]. 广州: 南方医科大学, 2016: 1-103. DOI: 10.7666/d.Y3117024. 
																							 doi: 10.7666/d.Y3117024  | 
										
| [32] |  
											 赵丽丽, 赵文文, 冯青青, 等. 沉默PD-L1表达对胃癌细胞生物学行为的影响[J]. 国际肿瘤学杂志, 2021, 48(12): 705-710. DOI: 10.3760/cma.j.cn371439-20210813-00140. 
																							 doi: 10.3760/cma.j.cn371439-20210813-00140  | 
										
| [33] |  
											 Jayachandran J, Srinivasan H, Mani KP. Molecular mechanism involved in epithelial to mesenchymal transition[J]. Arch Biochem Biophys, 2021, 710: 108984. DOI: 10.1016/j.abb.2021.108984. 
																							 doi: 10.1016/j.abb.2021.108984  | 
										
| [34] |  
											 Zhang Y, Weinberg RA. Epithelial-to-mesenchymal transition in cancer: complexity and opportunities[J]. Front Med, 2018, 12(4): 361-373. DOI: 10.1007/s11684-018-0656-6. 
																							 doi: 10.1007/s11684-018-0656-6  | 
										
| [35] |  
											 Dongre A, Weinberg RA. New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer[J]. Nat Rev Mol Cell Biol, 2019, 20(2): 69-84. DOI: 10.1038/s41580-018-0080-4. 
																							 doi: 10.1038/s41580-018-0080-4  | 
										
| [36] |  
											 Yang Y, Li X, Du J, et al.  Involvement of microRNAs-MMPs-E-cadherin in the migration and invasion of gastric cancer cells infected with Helicobacter pylori[J]. Exp Cell Res, 2018, 367(2): 196-204. DOI: 10.1016/j.yexcr.2018.03.036. 
																							 doi: S0014-4827(18)30196-4 pmid: 29604247  | 
										
| [37] |  
											 Dilek FH, Topak N, Aktepe F, et al.  E-cadherin, beta-catenin adhesion complex and relation to matrilysin expression in pT3 rectosigmoid cancers[J]. Pathol Res Pract, 2008, 204(11): 809-815. DOI: 10.1016/j.prp.2008.05.010. 
																							 doi: 10.1016/j.prp.2008.05.010 pmid: 18674869  | 
										
| [38] | Dobriţoiu M, Stepan AE, Mărgăritescu C, et al. Immunoexpression of E-cadherin, P-cadherin and fibronectin in gastric carcinomas[J]. Rom J Morphol Embryol, 2019, 60(2): 573-579. | 
| [39] |  
											 Cha YH, Kim NH, Park C, et al.  MiRNA-34 intrinsically links p53 tumor suppressor and Wnt signaling[J]. Cell Cycle, 2012, 11(7): 1273-1281. DOI: 10.4161/cc.19618. 
																							 doi: 10.4161/cc.19618 pmid: 22421157  | 
										
| [40] |  
											 Wieczorek-Szukala K, Lewinski A. The role of snail-1 in thyroid cancer—what we know so far[J]. J Clin Med, 2021, 10(11): 2324. DOI: 10.3390/jcm10112324. 
																							 doi: 10.3390/jcm10112324  | 
										
| [41] |  
											 Baulida J, Díaz VM, Herreros AG. Snail1: a transcriptional factor controlled at multiple levels[J]. J Clin Med, 2019, 8(6): 757. DOI: 10.3390/jcm8060757. 
																							 doi: 10.3390/jcm8060757  | 
										
| [42] |  
											 金丽, 耿敬姝. Snail蛋白表达与胃癌浸润转移的相关性研究[J]. 肿瘤预防与治疗, 2008, 21(1): 22-24. DOI: 10.3969/j.issn.1674-0904.2008.01.006. 
																							 doi: 10.3969/j.issn.1674-0904.2008.01.006  | 
										
| [43] |  
											 Siemens H, Jackstadt R, Hünten S, et al.  miR-34 and SNAIL form a double-negative feedback loop to regulate epithelial-mesenchymal transitions[J]. Cell Cycle, 2011, 10(24): 4256-4271. DOI: 10.4161/cc.10.24.18552. 
																							 doi: 10.4161/cc.10.24.18552 pmid: 22134354  | 
										
| [44] |  
											 Zhang Y, Yuan Y, Zhang Y, et al.  SNHG7 accelerates cell migration and invasion through regulating miR-34a-Snail-EMT axis in gastric cancer[J]. Cell Cycle, 2020, 19(1): 142-152. DOI: 10.1080/15384101.2019.1699753. 
																							 doi: 10.1080/15384101.2019.1699753 pmid: 31814518  | 
										
| [45] | 曹利勉. c-Myc通过长非编码RNA LAST调控细胞周期的机制研究[D]. 合肥: 中国科学技术大学, 2019. | 
| [46] |  
											 刘德仁, 丁闯, 侍孝红, 等. c-Myc在人胃癌组织中的表达及其对胃癌细胞增殖、迁移和侵袭的影响[J]. 现代肿瘤医学, 2021, 29(20): 3526-3531. DOI: 10.3969/j.issn.1672-4992.2021.20.004. 
																							 doi: 10.3969/j.issn.1672-4992.2021.20.004  | 
										
| [47] |  
											 Krishnamurthy N, Kurzrock R. Targeting the Wnt/beta-catenin pathway in cancer: update on effectors and inhibitors[J]. Cancer Treat Rev, 2018, 62: 50-60. DOI: 10.1016/j.ctrv.2017.11.002. 
																							 doi: S0305-7372(17)30187-1 pmid: 29169144  | 
										
| [48] |  
											 Jiang W, Wang D, Alraies A, et al.  Wnt-GSK3 β/β-catenin regulates the differentiation of dental pulp stem cells into bladder smooth muscle cells[J]. Stem Cells Int, 2019, 2019: 8907570. DOI: 10.1155/2019/8907570. 
																							 doi: 10.1155/2019/8907570  | 
										
| [49] |  
											 Wei B, Cao J, Tian JH, et al.  Mortalin maintains breast cancer stem cells stemness via activation of Wnt/GSK3β/β-catenin signa-ling pathway[J]. Am J Cancer Res, 2021, 11(6): 2696-2716. 
																							 pmid: 34249423  | 
										
| [50] |  
											 Bugter JM, Fenderico N, Maurice MM. Mutations and mechanisms of WNT pathway tumour suppressors in cancer[J]. Nat Rev Cancer, 2021, 21(1): 5-21. DOI: 10.1038/s41568-020-00307-z. 
																							 doi: 10.1038/s41568-020-00307-z pmid: 33097916  | 
										
| [51] |  
											 李硕果, 孔国强, 高社干. GSK3β在贲门腺癌中的表达及临床意义[J]. 重庆医学, 2020, 49(17): 2882-2884, 2888. DOI: 10.3969/j.issn.1671-8348.2020.17.023. 
																							 doi: 10.3969/j.issn.1671-8348.2020.17.023  | 
										
| [52] |  
											 Pan J, Fan Z, Wang Z, et al.  CD36 mediates palmitate acid-induced metastasis of gastric cancer via AKT/GSK-3β/β-catenin pathway[J]. J Exp Clin Cancer Res, 2019, 38(1): 52. DOI: 10.1186/s13046-019-1049-7. 
																							 doi: 10.1186/s13046-019-1049-7  | 
										
| [53] |  
											 Li X, Chen W, Yang C, et al.  IGHG1 upregulation promoted gastric cancer malignancy via AKT/GSK-3β/β-catenin pathway[J]. Cancer Cell Int, 2021, 21(1): 397. DOI: 10.1186/s12935-021-02098-1. 
																							 doi: 10.1186/s12935-021-02098-1 pmid: 34315496  | 
										
| [54] |  
											 Wang G, Liu G, Ye Y, et al.  Upregulation of miR-34a by diallyl disulfide suppresses invasion and induces apoptosis in SGC-7901 cells through inhibition of the PI3K/Akt signaling pathway[J]. Oncol Lett, 2016, 11(4): 2661-2667. DOI: 10.3892/ol.2016.4266. 
																							 doi: 10.3892/ol.2016.4266 pmid: 27073535  | 
										
| [55] | Zhang Q, Wang J, Li N, et al. miR-34a increases the sensitivity of colorectal cancer cells to 5-fluorouracil in vitro and in vivo[J]. Am J Cancer Res, 2018, 8(2): 280-290. | 
| [56] |  
											 Lacombe J, Zenhausern F. Emergence of miR-34a in radiation therapy[J]. Crit Rev Oncol Hematol, 2017, 109: 69-78. DOI: 10.1016/j.critrevonc.2016.11.017. 
																							 doi: S1040-8428(16)30351-1 pmid: 28010900  | 
										
| [57] |  
											 Beg MS, Brenner AJ, Sachdev J, et al.  Phase Ⅰ study of MRX34, a liposomal miR-34a mimic, administered twice weekly in patients with advanced solid tumors[J]. Invest New Drugs, 2017, 35(2): 180-188. DOI: 10.1007/s10637-016-0407-y. 
																							 doi: 10.1007/s10637-016-0407-y  | 
										
| [58] |  
											 Zhang Z, Kong Y, Yang W, et al.  Upregulation of microRNA-34a enhances the DDP sensitivity of gastric cancer cells by modulating proliferation and apoptosis via targeting Met[J]. Oncol Rep, 2016, 36(4): 2391-2397. DOI: 10.3892/or.2016.5016. 
																							 doi: 10.3892/or.2016.5016 pmid: 27513895  | 
										
| [59] |  
											 Song Z, Liang X, Wang Y, et al.  Phenylboronic acid-functionalized polyamidoamine-mediated miR-34a delivery for the treatment of gastric cancer[J]. Biomater Sci, 2019, 7(4): 1632-1642. DOI: 10.1039/c8bm01385c. 
																							 doi: 10.1039/c8bm01385c  | 
										
| [1] | Gong Yan, Chen Honglei. Research progress on the mechanism of microRNA regulation of cisplatin resistance in ovarian cancer [J]. Journal of International Oncology, 2024, 51(3): 186-190. | 
| [2] | Yang Ya, Wang Huili, Liu Yan, Guo Jinfeng, Wang Chunxia, Lyu Min, Shan Changping. Effects of GCSH gene on proliferation and apoptosis of gastric cancer SNU-1 cells [J]. Journal of International Oncology, 2023, 50(5): 257-262. | 
| [3] | Quan Zhenhao, Xu Feipeng, Huang Zhe, Huang Xianjin, Chen Rihong, Sun Kaiyu, Hu Xu, Lin Lin. lncRNA FTX silencing inhibits gastric cancer cell proliferation through the miR-22-3p/NLRP3 inflammasome pathway [J]. Journal of International Oncology, 2023, 50(4): 202-207. | 
| [4] | Yang Ya, Ning Xiaofei, Li Bingliang, Yao Hui, Shan Changping, Lyu Min. Study on the mechanism of procyanidin mediated anti gastric cancer SNU-1 cell line by inducing the production of reactive oxygen species [J]. Journal of International Oncology, 2022, 49(5): 257-262. | 
| [5] | Zhou Renbang, Zhang Zhongchuan, Xu Zhiyuan, Zhu Xunbing. MiR-219a-5p inhibits the proliferation, invasion and migration of osteosarcoma U2OS cells by negatively regulating HMGA2 [J]. Journal of International Oncology, 2022, 49(4): 193-198. | 
| [6] | Jin Jiahui, Chen Cunhai, Ma Xuezhen. Effects of radiation-associated miRNA in radiotherapy for breast cancer [J]. Journal of International Oncology, 2022, 49(12): 735-738. | 
| [7] | Cai Jiahui, Rong Guanghong. Mechanism and clinical significance of YAP in the progression of gastric cancer [J]. Journal of International Oncology, 2022, 49(11): 687-691. | 
| [8] | Luo Liyun, Lai Canhui, Liang Renpei, Yang Aiwu, Lin Zhimin. Correlation between the expressions of miR-524-5p and SOX9 in advanced gastric cancer and their influences on chemotherapy efficacy and prognosis [J]. Journal of International Oncology, 2022, 49(1): 45-50. | 
| [9] | Hong Anlan, Cao Meng, Wang Yan, Fang Fang. Research progress on lncRNAs as members of ceRNA network in melanoma [J]. Journal of International Oncology, 2022, 49(1): 61-64. | 
| [10] | Hu Guangyue, Yin Hong, Zhang Hui, Luo Hong. Efficacy predictors of immune checkpoint inhibitors in the treatment of metastatic gastric cancer [J]. Journal of International Oncology, 2021, 48(8): 498-501. | 
| [11] | Liu Pei, Pu Jiaze, Huang Wen, Wang Fei. Expression differences of miR-200c, miR-19a and miR-155 in gefitinib sensitive and drug resistant NSCLC patients and their effects on prognosis [J]. Journal of International Oncology, 2021, 48(7): 409-414. | 
| [12] | Wang Yang, Liu Qian, Long Hui, Wu Qingming. Research status of fecal detection for colorectal cancer markers [J]. Journal of International Oncology, 2021, 48(7): 441-444. | 
| [13] | Yan Xingyu, Lian Zhenying, Diao Yutao, Liu Hongyan. BMXΔN mediates gefitinib resistance of lung cancer cells through ERK/MAPK signaling pathway [J]. Journal of International Oncology, 2021, 48(6): 328-334. | 
| [14] | Cheng Yiming, Li Gang, Wang Zhenming, Lyu Qianwen, Li Shirong. Value of serum miR-196a-5p and miR-105-5p in differential diagnosis of benign and malignant pulmonary nodules [J]. Journal of International Oncology, 2021, 48(5): 282-286. | 
| [15] | Hou Jianghou, Yao Yingjie, Zhan Xiaoyan, Yang Yimei. Regulation of EMT in lung cancer cells by interaction of Hsp90 and SIRT1 [J]. Journal of International Oncology, 2021, 48(4): 200-205. | 
| Viewed | ||||||
| 
										Full text | 
									
										 | 
								|||||
| 
										Abstract | 
									
										 | 
								|||||