
Journal of International Oncology ›› 2022, Vol. 49 ›› Issue (12): 735-738.doi: 10.3760/cma.j.cn371439-20220805-00144
• Reviews • Previous Articles Next Articles
					
													Jin Jiahui1,2, Chen Cunhai2, Ma Xuezhen2(
)
												  
						
						
						
					
				
Received:2022-08-05
															
							
																	Revised:2022-09-16
															
							
															
							
																	Online:2022-12-08
															
							
																	Published:2023-01-05
															
						Contact:
								Ma Xuezhen   
																	E-mail:maxuezhen1968@126.com
																					Jin Jiahui, Chen Cunhai, Ma Xuezhen. Effects of radiation-associated miRNA in radiotherapy for breast cancer[J]. Journal of International Oncology, 2022, 49(12): 735-738.
| [1] |  
											 Siegel RL, Miller KD, Fuchs HE, et al.  Cancer statistics, 2021[J]. CA Cancer J Clin, 2021, 71(1): 7-33. DOI: 10.3322/caac.21654. 
																							 doi: 10.3322/caac.21654  | 
										
| [2] |  
											 中国抗癌协会乳腺癌专业委员会. 中国抗癌协会乳腺癌诊治指南与规范(2021年版)[J]. 中国癌症杂志, 2021, 31(10): 954-1040. DOI: 10.19401/j.cnki.1007-3639.2021.10.013. 
																							 doi: 10.19401/j.cnki.1007-3639.2021.10.013  | 
										
| [3] |  
											 Jarosz-Biej M, Smolarczyk R, Cichoń T, et al.  Tumor microenviron-ment as a "game changer" in cancer radiotherapy[J]. Int J Mol Sci, 2019, 20(13): 3212. DOI: 10.3390/ijms20133212. 
																							 doi: 10.3390/ijms20133212  | 
										
| [4] |  
											 Cabrera-Licona A, Pérez-Añorve IX, Flores-Fortis M, et al.  Decip-hering the epigenetic network in cancer radioresistance[J]. Radiother Oncol, 2021, 159: 48-59. DOI: 10.1016/j.radonc.2021.03.012. 
																							 doi: 10.1016/j.radonc.2021.03.012 pmid: 33741468  | 
										
| [5] |  
											 Qi X, Zhang DH, Wu N, et al.  CeRNA in cancer: possible functions and clinical implications[J]. J Med Genet, 2015, 52(10): 710-718. DOI: 10.1136/jmedgenet-2015-103334. 
																							 doi: 10.1136/jmedgenet-2015-103334 pmid: 26358722  | 
										
| [6] |  
											 Scully R, Panday A, Elango R, et al.  DNA double-strand break repair-pathway choice in somatic mammalian cells[J]. Nat Rev Mol Cell Biol, 2019, 20(11): 698-714. DOI: 10.1038/s41580-019-0152-0. 
																							 doi: 10.1038/s41580-019-0152-0  | 
										
| [7] |  
											 Tarsounas M, Sung P. The antitumorigenic roles of BRCA1-BARD1 in DNA repair and replication[J]. Nat Rev Mol Cell Biol, 2020, 21(5): 284-299. DOI: 10.1038/s41580-020-0218-z. 
																							 doi: 10.1038/s41580-020-0218-z  | 
										
| [8] |  
											 Tan X, Li Z, Ren S, et al.  Dynamically decreased miR-671-5p exp-ression is associated with oncogenic transformation and radiochemo-resistance in breast cancer[J]. Breast Cancer Res, 2019, 21(1): 89. DOI: 10.1186/s13058-019-1173-5. 
																							 doi: 10.1186/s13058-019-1173-5  | 
										
| [9] |  
											 Wang B, Zheng J, Li R, et al.  Long noncoding RNA LINC02582 acts downstream of miR-200c to promote radioresistance through CHK1 in breast cancer cells[J]. Cell Death Dis, 2019, 10(10): 764. DOI: 10.1038/s41419-019-1996-0. 
																							 doi: 10.1038/s41419-019-1996-0 pmid: 31601781  | 
										
| [10] |  
											 Pajic M, Froio D, Daly S, et al.  miR-139-5p modulates radiothe-rapy resistance in breast cancer by repressing multiple gene networks of DNA repair and ROS defense[J]. Cancer Res, 2018, 78(2): 501-515. DOI: 10.1158/0008-5472.CAN-16-3105. 
																							 doi: 10.1158/0008-5472.CAN-16-3105  | 
										
| [11] |  
											 Icard P, Fournel L, Wu Z, et al.  Interconnection between metabo-lism and cell cycle in cancer[J]. Trends Biochem Sci, 2019, 44(6): 490-501. DOI: 10.1016/j.tibs.2018.12.007. 
																							 doi: 10.1016/j.tibs.2018.12.007  | 
										
| [12] |  
											 吴儒星. miR-8069靶向作用CCND1增强三阴乳腺癌放射敏感性的研究[D]. 武汉: 华中科技大学, 2021. DOI: 10.27157/d.cnki.ghzku.2021.000001. 
																							 doi: 10.27157/d.cnki.ghzku.2021.000001  | 
										
| [13] |  
											 Zhang N, Zeng X, Sun C, et al.  LncRNA LINC00963 promotes tumorigenesis and radioresistance in breast cancer by sponging miR-324-3p and inducing ACK1 expression[J]. Mol Ther Nucleic Acids, 2019, 18: 871-881. DOI: 10.1016/j.omtn.2019.09.033. 
																							 doi: 10.1016/j.omtn.2019.09.033  | 
										
| [14] |  
											 Ren YQ, Fu F, Han J. MiR-27a modulates radiosensitivity of triple-negative breast cancer (TNBC) cells by targeting CDC27[J]. Med Sci Monit, 2015, 21: 1297-1303. DOI: 10.12659/MSM.893974. 
																							 doi: 10.12659/MSM.893974  | 
										
| [15] |  
											 Mei Z, Su T, Ye J, et al.  The miR-15 family enhances the radio-sensitivity of breast cancer cells by targeting G2 checkpoints[J]. Radiat Res, 2015, 183(2): 196-207. DOI: 10.1667/RR13784.1. 
																							 doi: 10.1667/RR13784.1  | 
										
| [16] |  
											 Zhang X, Li Y, Wang D, et al.  miR-22 suppresses tumorigenesis and improves radiosensitivity of breast cancer cells by targeting Sirt1[J]. Biol Res, 2017, 50(1): 27. DOI: 10.1186/s40659-017-0133-8. 
																							 doi: 10.1186/s40659-017-0133-8 pmid: 28882183  | 
										
| [17] |  
											 Kong D, Shen D, Liu Z, et al.  Circ_0008500 knockdown improves radiosensitivity and inhibits tumorigenesis in breast cancer through the miR-758-3p/PFN2 axis[J]. J Mammary Gland Biol Neoplasia, 2022, 27(1): 37-52. DOI: 10.1007/s10911-022-09514-w. 
																							 doi: 10.1007/s10911-022-09514-w  | 
										
| [18] |  
											 Wu J, Sun Z, Sun H, et al.  MicroRNA-27a promotes tumorige-nesis via targeting AKT in triple negative breast cancer[J]. Mol Med Rep, 2018, 17(1): 562-570. DOI: 10.3892/mmr.2017.7886. 
																							 doi: 10.3892/mmr.2017.7886  | 
										
| [19] |  
											 Ma Y, Yu L, Yan W, et al.  lncRNA GAS5 sensitizes breast cancer cells to ionizing radiation by inhibiting DNA repair[J]. Biomed Res Int, 2022, 2022: 1987519. DOI: 10.1155/2022/1987519. 
																							 doi: 10.1155/2022/1987519  | 
										
| [20] |  
											 Cao K, Tait SWG. Apoptosis and cancer: force awakens, phantom menace, or both?[J]. Int Rev Cell Mol Biol, 2018, 337: 135-152. DOI: 10.1016/bs.ircmb.2017.12.003. 
																							 doi: S1937-6448(17)30101-6 pmid: 29551159  | 
										
| [21] |  
											 Lai Y, Chen Y, Lin Y, et al.  Down-regulation of lncRNA CCAT1 enhances radiosensitivity via regulating miR-148b in breast cancer[J]. Cell Biol Int, 2018, 42(2): 227-236. DOI: 10.1002/cbin.10890. 
																							 doi: 10.1002/cbin.10890 pmid: 29024383  | 
										
| [22] |  
											 Fu Y, Xiong J. MicroRNA-124 enhances response to radiotherapy in human epidermal growth factor receptor 2-positive breast cancer cells by targeting signal transducer and activator of transcription 3[J]. Croat Med J, 2016, 57(5): 457-464. DOI: 10.3325/cmj.2016.57.457. 
																							 doi: 10.3325/cmj.2016.57.457 pmid: 27815936  | 
										
| [23] |  
											 Yang B, Kuai F, Chen Z, et al.  miR-634 decreases the radioresis-tance of human breast cancer cells by targeting STAT3[J]. Cancer Biother Radiopharm, 2020, 35(3): 241-248. DOI: 10.1089/cbr.2019.3220. 
																							 doi: 10.1089/cbr.2019.3220  | 
										
| [24] |  
											 Li X, He S, Ma B. Autophagy and autophagy-related proteins in cancer[J]. Mol Cancer, 2020, 19(1): 12. DOI: 10.1186/s12943-020-1138-4. 
																							 doi: 10.1186/s12943-020-1138-4 pmid: 31969156  | 
										
| [25] |  
											 Meng C, Liu Y, Shen Y, et al.  MicroRNA-26b suppresses auto-phagy in breast cancer cells by targeting DRAM1 mRNA, and is downregulated by irradiation[J]. Oncol Lett, 2018, 15(2): 1435-1440. DOI: 10.3892/ol.2017.7452. 
																							 doi: 10.3892/ol.2017.7452  | 
										
| [26] |  
											 Luo J, Chen J, He L. MiR-129-5p attenuates irradiation-induced autophagy and decreases radioresistance of breast cancer cells by targeting HMGB1[J]. Med Sci Monit, 2015, 21: 4122-4129. DOI: 10.12659/msm.896661. 
																							 doi: 10.12659/msm.896661  | 
										
| [27] |  
											 Sun Q, Liu T, Yuan Y, et al.  MiR-200c inhibits autophagy and enhances radiosensitivity in breast cancer cells by targeting UBQLN1[J]. Int J Cancer, 2015, 136(5): 1003-1012. DOI: 10.1002/ijc.29065. 
																							 doi: 10.1002/ijc.29065 pmid: 25044403  | 
										
| [28] |  
											 Gomes LR, Menck CFM, Leandro GS. Autophagy roles in the modulation of DNA repair pathways[J]. Int J Mol Sci, 2017, 18(11): 2351. DOI: 10.3390/ijms18112351. 
																							 doi: 10.3390/ijms18112351  | 
										
| [29] |  
											 Tang D, Kang R, Livesey KM, et al.  Endogenous HMGB1 regulates autophagy[J]. J Cell Biol, 2010, 190(5): 881-892. DOI: 10.1083/jcb.200911078. 
																							 doi: 10.1083/jcb.200911078 pmid: 20819940  | 
										
| [30] |  
											 Sun H, Ding C, Zhang H, et al.  Let-7 miRNAs sensitize breast cancer stem cells to radiation-induced repression through inhibition of the cyclin D1/Akt1/Wnt1 signaling pathway[J]. Mol Med Rep, 2016, 14(4): 3285-3292. DOI: 10.3892/mmr.2016.5656. 
																							 doi: 10.3892/mmr.2016.5656  | 
										
| [31] |  
											 Hong SE, Jin HO, Kim SM, et al.  miR-3188 enhances sensitivity of breast cancer cells to ionizing radiation by down-regulating rictor[J]. Anticancer Res, 2021, 41(12): 6169-6176. DOI: 10.21873/anticanres.15436. 
																							 doi: 10.21873/anticanres.15436  | 
										
| [32] |  
											 Yu L, Yang Y, Hou J, et al.  MicroRNA-144 affects radiotherapy sensitivity by promoting proliferation, migration and invasion of breast cancer cells[J]. Oncol Rep, 2015, 34(4): 1845-1852. DOI: 10.3892/or.2015.4173. 
																							 doi: 10.3892/or.2015.4173 pmid: 26252024  | 
										
| [33] |  
											 Metheetrairut C, Adams BD, Nallur S, et al.  Cel-miR-237 and its homologue, hsa-miR-125b, modulate the cellular response to ionizing radiation[J]. Oncogene, 2017, 36(4): 512-524. DOI: 10.1038/onc.2016.222. 
																							 doi: 10.1038/onc.2016.222 pmid: 27321180  | 
										
| [34] |  
											 Lee HC, Her NG, Kang D, et al.  Radiation-inducible miR-770-5p sensitizes tumors to radiation through direct targeting of PDZ-binding kinase[J]. Cell Death Dis, 2017, 8(3): e2693. DOI: 10.1038/cddis.2017.116. 
																							 doi: 10.1038/cddis.2017.116  | 
										
| [35] |  
											 Luo M, Ding L, Li Q, et al.  MiR-668 enhances the radioresistance of human breast cancer cell by targeting IκBα[J]. Breast Cancer, 2017, 24(5): 673-682. DOI: 10.1007/s12282-017-0756-1. 
																							 doi: 10.1007/s12282-017-0756-1 pmid: 28138801  | 
										
| [1] | Wang Ying, Liu Nan, Guo Bing. Advances of antibody-drug conjugate in the therapy of metastatic breast cancer [J]. Journal of International Oncology, 2024, 51(6): 364-369. | 
| [2] | Sa Qiang, Xu Hangcheng, Wang Jiayu. Advances in immunotherapy for breast cancer [J]. Journal of International Oncology, 2024, 51(4): 227-234. | 
| [3] | Yang Zhi, Lu Yiqiao, Gu Huayan, Ding Jialing, Guo Guilong. Research progress of tumor microenvironment mediated drug resistance in targeted therapy of breast cancer [J]. Journal of International Oncology, 2024, 51(4): 235-238. | 
| [4] | Gong Yan, Chen Honglei. Research progress on the mechanism of microRNA regulation of cisplatin resistance in ovarian cancer [J]. Journal of International Oncology, 2024, 51(3): 186-190. | 
| [5] | Chen Boguang, Wang Sugui, Zhang Yongjie. Role of serum cholinesterase and inflammatory markers in the prognosis of stage ⅠA -ⅢA breast cancer [J]. Journal of International Oncology, 2024, 51(2): 73-82. | 
| [6] | Gu Huayan, Zhu Teng, Guo Guilong. Breast microbiota and breast cancer: present and future [J]. Journal of International Oncology, 2024, 51(1): 55-58. | 
| [7] | Wang Jing, Xu Wenting. Value of NLR, CEA combined with coagulation indicators in the differential diagnosis of benign and malignant breast nodules with a diameter ≤ 1.0 cm [J]. Journal of International Oncology, 2023, 50(9): 520-526. | 
| [8] | Feng Chengtian, Huang Furong, Cao Shiyu, Wang Jianyu, Nanding Abiyasi, Jiang Yongdong, Zhu Juanying. Relationships between HER2 protein expression and imaging features in HER2 positive breast cancer patients [J]. Journal of International Oncology, 2023, 50(9): 527-531. | 
| [9] | Feng Dongxu, Wu Wei, Gao Pingfa, Wang Jun, Shi Lijuan, Chen Dawei, Li Wenbing, Zhang Meifeng. Effects of miR-451 on glycolysis and apoptosis of breast cancer cells by regulating Rho/ROCK1 pathway [J]. Journal of International Oncology, 2023, 50(8): 449-456. | 
| [10] | Pan Shulan, Liu Chang, He Ping. Effect of fritinib on angiogenesis, tumor growth and IRE1-ASK1-JNK pathway in triple negative breast cancer [J]. Journal of International Oncology, 2023, 50(8): 457-462. | 
| [11] | Wang Wende, Zeng De. Research progress on the mechanism of endocrine therapy resistance for breast cancer [J]. Journal of International Oncology, 2023, 50(6): 352-356. | 
| [12] | Li Qingshan, Xie Xin, Zhang Nan, Liu Shuai. Research progress on the application of combining radiotherapy and systemic therapy in breast cancer [J]. Journal of International Oncology, 2023, 50(6): 362-367. | 
| [13] | Quan Zhenhao, Xu Feipeng, Huang Zhe, Huang Xianjin, Chen Rihong, Sun Kaiyu, Hu Xu, Lin Lin. lncRNA FTX silencing inhibits gastric cancer cell proliferation through the miR-22-3p/NLRP3 inflammasome pathway [J]. Journal of International Oncology, 2023, 50(4): 202-207. | 
| [14] | Zhu Jun, Huang Meijin, Li Yuan, Liu Zegang, Xun Xin, Chen Hong. Research progress on targeted therapy of breast cancer with low expression of HER2 [J]. Journal of International Oncology, 2023, 50(4): 236-240. | 
| [15] | Zhou Ting, Xu Shaohua, Mei Lin. Efficacy and safety of bevacizumab combined with capecitabine in the treatment of advanced breast cancer [J]. Journal of International Oncology, 2023, 50(3): 144-149. | 
| Viewed | ||||||
| 
										Full text | 
									
										 | 
								|||||
| 
										Abstract | 
									
										 | 
								|||||