Journal of International Oncology ›› 2022, Vol. 49 ›› Issue (12): 735-738.doi: 10.3760/cma.j.cn371439-20220805-00144
• Reviews • Previous Articles Next Articles
Jin Jiahui1,2, Chen Cunhai2, Ma Xuezhen2()
Received:
2022-08-05
Revised:
2022-09-16
Online:
2022-12-08
Published:
2023-01-05
Contact:
Ma Xuezhen
E-mail:maxuezhen1968@126.com
Jin Jiahui, Chen Cunhai, Ma Xuezhen. Effects of radiation-associated miRNA in radiotherapy for breast cancer[J]. Journal of International Oncology, 2022, 49(12): 735-738.
[1] |
Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistics, 2021[J]. CA Cancer J Clin, 2021, 71(1): 7-33. DOI: 10.3322/caac.21654.
doi: 10.3322/caac.21654 |
[2] |
中国抗癌协会乳腺癌专业委员会. 中国抗癌协会乳腺癌诊治指南与规范(2021年版)[J]. 中国癌症杂志, 2021, 31(10): 954-1040. DOI: 10.19401/j.cnki.1007-3639.2021.10.013.
doi: 10.19401/j.cnki.1007-3639.2021.10.013 |
[3] |
Jarosz-Biej M, Smolarczyk R, Cichoń T, et al. Tumor microenviron-ment as a "game changer" in cancer radiotherapy[J]. Int J Mol Sci, 2019, 20(13): 3212. DOI: 10.3390/ijms20133212.
doi: 10.3390/ijms20133212 |
[4] |
Cabrera-Licona A, Pérez-Añorve IX, Flores-Fortis M, et al. Decip-hering the epigenetic network in cancer radioresistance[J]. Radiother Oncol, 2021, 159: 48-59. DOI: 10.1016/j.radonc.2021.03.012.
doi: 10.1016/j.radonc.2021.03.012 pmid: 33741468 |
[5] |
Qi X, Zhang DH, Wu N, et al. CeRNA in cancer: possible functions and clinical implications[J]. J Med Genet, 2015, 52(10): 710-718. DOI: 10.1136/jmedgenet-2015-103334.
doi: 10.1136/jmedgenet-2015-103334 pmid: 26358722 |
[6] |
Scully R, Panday A, Elango R, et al. DNA double-strand break repair-pathway choice in somatic mammalian cells[J]. Nat Rev Mol Cell Biol, 2019, 20(11): 698-714. DOI: 10.1038/s41580-019-0152-0.
doi: 10.1038/s41580-019-0152-0 |
[7] |
Tarsounas M, Sung P. The antitumorigenic roles of BRCA1-BARD1 in DNA repair and replication[J]. Nat Rev Mol Cell Biol, 2020, 21(5): 284-299. DOI: 10.1038/s41580-020-0218-z.
doi: 10.1038/s41580-020-0218-z |
[8] |
Tan X, Li Z, Ren S, et al. Dynamically decreased miR-671-5p exp-ression is associated with oncogenic transformation and radiochemo-resistance in breast cancer[J]. Breast Cancer Res, 2019, 21(1): 89. DOI: 10.1186/s13058-019-1173-5.
doi: 10.1186/s13058-019-1173-5 |
[9] |
Wang B, Zheng J, Li R, et al. Long noncoding RNA LINC02582 acts downstream of miR-200c to promote radioresistance through CHK1 in breast cancer cells[J]. Cell Death Dis, 2019, 10(10): 764. DOI: 10.1038/s41419-019-1996-0.
doi: 10.1038/s41419-019-1996-0 pmid: 31601781 |
[10] |
Pajic M, Froio D, Daly S, et al. miR-139-5p modulates radiothe-rapy resistance in breast cancer by repressing multiple gene networks of DNA repair and ROS defense[J]. Cancer Res, 2018, 78(2): 501-515. DOI: 10.1158/0008-5472.CAN-16-3105.
doi: 10.1158/0008-5472.CAN-16-3105 |
[11] |
Icard P, Fournel L, Wu Z, et al. Interconnection between metabo-lism and cell cycle in cancer[J]. Trends Biochem Sci, 2019, 44(6): 490-501. DOI: 10.1016/j.tibs.2018.12.007.
doi: 10.1016/j.tibs.2018.12.007 |
[12] |
吴儒星. miR-8069靶向作用CCND1增强三阴乳腺癌放射敏感性的研究[D]. 武汉: 华中科技大学, 2021. DOI: 10.27157/d.cnki.ghzku.2021.000001.
doi: 10.27157/d.cnki.ghzku.2021.000001 |
[13] |
Zhang N, Zeng X, Sun C, et al. LncRNA LINC00963 promotes tumorigenesis and radioresistance in breast cancer by sponging miR-324-3p and inducing ACK1 expression[J]. Mol Ther Nucleic Acids, 2019, 18: 871-881. DOI: 10.1016/j.omtn.2019.09.033.
doi: 10.1016/j.omtn.2019.09.033 |
[14] |
Ren YQ, Fu F, Han J. MiR-27a modulates radiosensitivity of triple-negative breast cancer (TNBC) cells by targeting CDC27[J]. Med Sci Monit, 2015, 21: 1297-1303. DOI: 10.12659/MSM.893974.
doi: 10.12659/MSM.893974 |
[15] |
Mei Z, Su T, Ye J, et al. The miR-15 family enhances the radio-sensitivity of breast cancer cells by targeting G2 checkpoints[J]. Radiat Res, 2015, 183(2): 196-207. DOI: 10.1667/RR13784.1.
doi: 10.1667/RR13784.1 |
[16] |
Zhang X, Li Y, Wang D, et al. miR-22 suppresses tumorigenesis and improves radiosensitivity of breast cancer cells by targeting Sirt1[J]. Biol Res, 2017, 50(1): 27. DOI: 10.1186/s40659-017-0133-8.
doi: 10.1186/s40659-017-0133-8 pmid: 28882183 |
[17] |
Kong D, Shen D, Liu Z, et al. Circ_0008500 knockdown improves radiosensitivity and inhibits tumorigenesis in breast cancer through the miR-758-3p/PFN2 axis[J]. J Mammary Gland Biol Neoplasia, 2022, 27(1): 37-52. DOI: 10.1007/s10911-022-09514-w.
doi: 10.1007/s10911-022-09514-w |
[18] |
Wu J, Sun Z, Sun H, et al. MicroRNA-27a promotes tumorige-nesis via targeting AKT in triple negative breast cancer[J]. Mol Med Rep, 2018, 17(1): 562-570. DOI: 10.3892/mmr.2017.7886.
doi: 10.3892/mmr.2017.7886 |
[19] |
Ma Y, Yu L, Yan W, et al. lncRNA GAS5 sensitizes breast cancer cells to ionizing radiation by inhibiting DNA repair[J]. Biomed Res Int, 2022, 2022: 1987519. DOI: 10.1155/2022/1987519.
doi: 10.1155/2022/1987519 |
[20] |
Cao K, Tait SWG. Apoptosis and cancer: force awakens, phantom menace, or both?[J]. Int Rev Cell Mol Biol, 2018, 337: 135-152. DOI: 10.1016/bs.ircmb.2017.12.003.
doi: S1937-6448(17)30101-6 pmid: 29551159 |
[21] |
Lai Y, Chen Y, Lin Y, et al. Down-regulation of lncRNA CCAT1 enhances radiosensitivity via regulating miR-148b in breast cancer[J]. Cell Biol Int, 2018, 42(2): 227-236. DOI: 10.1002/cbin.10890.
doi: 10.1002/cbin.10890 pmid: 29024383 |
[22] |
Fu Y, Xiong J. MicroRNA-124 enhances response to radiotherapy in human epidermal growth factor receptor 2-positive breast cancer cells by targeting signal transducer and activator of transcription 3[J]. Croat Med J, 2016, 57(5): 457-464. DOI: 10.3325/cmj.2016.57.457.
doi: 10.3325/cmj.2016.57.457 pmid: 27815936 |
[23] |
Yang B, Kuai F, Chen Z, et al. miR-634 decreases the radioresis-tance of human breast cancer cells by targeting STAT3[J]. Cancer Biother Radiopharm, 2020, 35(3): 241-248. DOI: 10.1089/cbr.2019.3220.
doi: 10.1089/cbr.2019.3220 |
[24] |
Li X, He S, Ma B. Autophagy and autophagy-related proteins in cancer[J]. Mol Cancer, 2020, 19(1): 12. DOI: 10.1186/s12943-020-1138-4.
doi: 10.1186/s12943-020-1138-4 pmid: 31969156 |
[25] |
Meng C, Liu Y, Shen Y, et al. MicroRNA-26b suppresses auto-phagy in breast cancer cells by targeting DRAM1 mRNA, and is downregulated by irradiation[J]. Oncol Lett, 2018, 15(2): 1435-1440. DOI: 10.3892/ol.2017.7452.
doi: 10.3892/ol.2017.7452 |
[26] |
Luo J, Chen J, He L. MiR-129-5p attenuates irradiation-induced autophagy and decreases radioresistance of breast cancer cells by targeting HMGB1[J]. Med Sci Monit, 2015, 21: 4122-4129. DOI: 10.12659/msm.896661.
doi: 10.12659/msm.896661 |
[27] |
Sun Q, Liu T, Yuan Y, et al. MiR-200c inhibits autophagy and enhances radiosensitivity in breast cancer cells by targeting UBQLN1[J]. Int J Cancer, 2015, 136(5): 1003-1012. DOI: 10.1002/ijc.29065.
doi: 10.1002/ijc.29065 pmid: 25044403 |
[28] |
Gomes LR, Menck CFM, Leandro GS. Autophagy roles in the modulation of DNA repair pathways[J]. Int J Mol Sci, 2017, 18(11): 2351. DOI: 10.3390/ijms18112351.
doi: 10.3390/ijms18112351 |
[29] |
Tang D, Kang R, Livesey KM, et al. Endogenous HMGB1 regulates autophagy[J]. J Cell Biol, 2010, 190(5): 881-892. DOI: 10.1083/jcb.200911078.
doi: 10.1083/jcb.200911078 pmid: 20819940 |
[30] |
Sun H, Ding C, Zhang H, et al. Let-7 miRNAs sensitize breast cancer stem cells to radiation-induced repression through inhibition of the cyclin D1/Akt1/Wnt1 signaling pathway[J]. Mol Med Rep, 2016, 14(4): 3285-3292. DOI: 10.3892/mmr.2016.5656.
doi: 10.3892/mmr.2016.5656 |
[31] |
Hong SE, Jin HO, Kim SM, et al. miR-3188 enhances sensitivity of breast cancer cells to ionizing radiation by down-regulating rictor[J]. Anticancer Res, 2021, 41(12): 6169-6176. DOI: 10.21873/anticanres.15436.
doi: 10.21873/anticanres.15436 |
[32] |
Yu L, Yang Y, Hou J, et al. MicroRNA-144 affects radiotherapy sensitivity by promoting proliferation, migration and invasion of breast cancer cells[J]. Oncol Rep, 2015, 34(4): 1845-1852. DOI: 10.3892/or.2015.4173.
doi: 10.3892/or.2015.4173 pmid: 26252024 |
[33] |
Metheetrairut C, Adams BD, Nallur S, et al. Cel-miR-237 and its homologue, hsa-miR-125b, modulate the cellular response to ionizing radiation[J]. Oncogene, 2017, 36(4): 512-524. DOI: 10.1038/onc.2016.222.
doi: 10.1038/onc.2016.222 pmid: 27321180 |
[34] |
Lee HC, Her NG, Kang D, et al. Radiation-inducible miR-770-5p sensitizes tumors to radiation through direct targeting of PDZ-binding kinase[J]. Cell Death Dis, 2017, 8(3): e2693. DOI: 10.1038/cddis.2017.116.
doi: 10.1038/cddis.2017.116 |
[35] |
Luo M, Ding L, Li Q, et al. MiR-668 enhances the radioresistance of human breast cancer cell by targeting IκBα[J]. Breast Cancer, 2017, 24(5): 673-682. DOI: 10.1007/s12282-017-0756-1.
doi: 10.1007/s12282-017-0756-1 pmid: 28138801 |
[1] | Wang Ying, Liu Nan, Guo Bing. Advances of antibody-drug conjugate in the therapy of metastatic breast cancer [J]. Journal of International Oncology, 2024, 51(6): 364-369. |
[2] | Sa Qiang, Xu Hangcheng, Wang Jiayu. Advances in immunotherapy for breast cancer [J]. Journal of International Oncology, 2024, 51(4): 227-234. |
[3] | Yang Zhi, Lu Yiqiao, Gu Huayan, Ding Jialing, Guo Guilong. Research progress of tumor microenvironment mediated drug resistance in targeted therapy of breast cancer [J]. Journal of International Oncology, 2024, 51(4): 235-238. |
[4] | Gong Yan, Chen Honglei. Research progress on the mechanism of microRNA regulation of cisplatin resistance in ovarian cancer [J]. Journal of International Oncology, 2024, 51(3): 186-190. |
[5] | Chen Boguang, Wang Sugui, Zhang Yongjie. Role of serum cholinesterase and inflammatory markers in the prognosis of stage ⅠA -ⅢA breast cancer [J]. Journal of International Oncology, 2024, 51(2): 73-82. |
[6] | Gu Huayan, Zhu Teng, Guo Guilong. Breast microbiota and breast cancer: present and future [J]. Journal of International Oncology, 2024, 51(1): 55-58. |
[7] | Wang Jing, Xu Wenting. Value of NLR, CEA combined with coagulation indicators in the differential diagnosis of benign and malignant breast nodules with a diameter ≤ 1.0 cm [J]. Journal of International Oncology, 2023, 50(9): 520-526. |
[8] | Feng Chengtian, Huang Furong, Cao Shiyu, Wang Jianyu, Nanding Abiyasi, Jiang Yongdong, Zhu Juanying. Relationships between HER2 protein expression and imaging features in HER2 positive breast cancer patients [J]. Journal of International Oncology, 2023, 50(9): 527-531. |
[9] | Feng Dongxu, Wu Wei, Gao Pingfa, Wang Jun, Shi Lijuan, Chen Dawei, Li Wenbing, Zhang Meifeng. Effects of miR-451 on glycolysis and apoptosis of breast cancer cells by regulating Rho/ROCK1 pathway [J]. Journal of International Oncology, 2023, 50(8): 449-456. |
[10] | Pan Shulan, Liu Chang, He Ping. Effect of fritinib on angiogenesis, tumor growth and IRE1-ASK1-JNK pathway in triple negative breast cancer [J]. Journal of International Oncology, 2023, 50(8): 457-462. |
[11] | Wang Wende, Zeng De. Research progress on the mechanism of endocrine therapy resistance for breast cancer [J]. Journal of International Oncology, 2023, 50(6): 352-356. |
[12] | Li Qingshan, Xie Xin, Zhang Nan, Liu Shuai. Research progress on the application of combining radiotherapy and systemic therapy in breast cancer [J]. Journal of International Oncology, 2023, 50(6): 362-367. |
[13] | Quan Zhenhao, Xu Feipeng, Huang Zhe, Huang Xianjin, Chen Rihong, Sun Kaiyu, Hu Xu, Lin Lin. lncRNA FTX silencing inhibits gastric cancer cell proliferation through the miR-22-3p/NLRP3 inflammasome pathway [J]. Journal of International Oncology, 2023, 50(4): 202-207. |
[14] | Zhu Jun, Huang Meijin, Li Yuan, Liu Zegang, Xun Xin, Chen Hong. Research progress on targeted therapy of breast cancer with low expression of HER2 [J]. Journal of International Oncology, 2023, 50(4): 236-240. |
[15] | Zhou Ting, Xu Shaohua, Mei Lin. Efficacy and safety of bevacizumab combined with capecitabine in the treatment of advanced breast cancer [J]. Journal of International Oncology, 2023, 50(3): 144-149. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||