Journal of International Oncology ›› 2022, Vol. 49 ›› Issue (11): 677-680.doi: 10.3760/cma.j.cn371439-20220612-00133
• Reviews • Previous Articles Next Articles
Received:
2022-06-12
Revised:
2022-09-22
Online:
2022-11-08
Published:
2022-12-06
Contact:
Lu Dan
E-mail:doctorlu1972@163.com
Supported by:
Li Yingjue, Lu Dan. Mechanism of PI3K pathway in tumor immune microenvironment[J]. Journal of International Oncology, 2022, 49(11): 677-680.
[1] |
Roma-Rodrigues C, Mendes R, Baptista PV, et al. Targeting tumor microenvironment for cancer therapy[J]. Int J Mol Sci, 2019, 20(4): 840. DOI: 10.3390/ijms20040840.
doi: 10.3390/ijms20040840 |
[2] |
O'Donnell JS, Teng MWL, Smyth MJ. Cancer immunoediting and resistance to T cell-based immunotherapy[J]. Nat Rev Clin Oncol, 2019, 16(3): 151-167. DOI: 10.1038/s41571-018-0142-8.
doi: 10.1038/s41571-018-0142-8 pmid: 30523282 |
[3] |
Topalian SL, Hodi FS, Brahmer JR, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer[J]. N Engl J Med, 2012, 366(26): 2443-2454. DOI: 10.1056/NEJMoa1200690.
doi: 10.1056/NEJMoa1200690 |
[4] |
Wu X, Gu Z, Chen Y, et al. Application of PD-1 blockade in cancer immunotherapy[J]. Comput Struct Biotechnol J, 2019, 17: 661-674. DOI: 10.1016/j.csbj.2019.03.006.
doi: 10.1016/j.csbj.2019.03.006 |
[5] |
Zappasodi R, Merghoub T, Wolchok JD. Emerging concepts for immune checkpoint blockade-based combination therapies[J]. Cancer Cell, 2018, 33(4): 581-598. DOI: 10.1016/j.ccell.2018.03.005.
doi: S1535-6108(18)30109-0 pmid: 29634946 |
[6] |
Ramapriyan R, Caetano MS, Barsoumian HB, et al. Altered cancer metabolism in mechanisms of immunotherapy resistance[J]. Pharmacol Ther, 2019, 195: 162-171. DOI: 10.1016/j.pharmthera.2018.11.004.
doi: 10.1016/j.pharmthera.2018.11.004 |
[7] |
du Rusquec P, Blonz C, Frenel JS, et al. Targeting the PI3K/Akt/mTOR pathway in estrogen-receptor positive HER2 negative advanced breast cancer[J]. Ther Adv Med Oncol, 2020, 12: 1758835920940939. DOI: 10.1177/1758835920940939.
doi: 10.1177/1758835920940939 |
[8] |
Vanhaesebroeck B, Perry MWD, Brown JR, et al. PI3K inhibitors are finally coming of age[J]. Nat Rev Drug Discov, 2021, 20(10): 741-769. DOI: 10.1038/s41573-021-00209-1.
doi: 10.1038/s41573-021-00209-1 pmid: 34127844 |
[9] |
Fruman DA, Chiu H, Hopkins BD, et al. The PI3K pathway in human disease[J]. Cell, 2017, 170(4): 605-635. DOI: 10.1016/j.cell.2017.07.029.
doi: S0092-8674(17)30865-6 pmid: 28802037 |
[10] |
Hanahan D. Hallmarks of cancer: new dimensions[J]. Cancer Discov, 2022, 12(1): 31-46. DOI: 10.1158/2159-8290.CD-21-1059.
doi: 10.1158/2159-8290.CD-21-1059 pmid: 35022204 |
[11] |
Liu M, Wei F, Wang J, et al. Myeloid-derived suppressor cells regulate the immunosuppressive functions of PD-1-PD-L1+Bregs through PD-L1/PI3K/AKT/NF-κB axis in breast cancer[J]. Cell Death Dis, 2021, 12(5): 465. DOI: 10.1038/s41419-021-03745-1.
doi: 10.1038/s41419-021-03745-1 |
[12] |
Farhood B, Najafi M, Mortezaee K. CD8+ cytotoxic T lymphocytes in cancer immunotherapy: a review[J]. J Cell Physiol, 2019, 234(6): 8509-8521. DOI: 10.1002/jcp.27782.
doi: 10.1002/jcp.27782 pmid: 30520029 |
[13] |
Xiang X, Wang J, Lu D, et al. Targeting tumor-associated macrophages to synergize tumor immunotherapy[J]. Signal Transduct Target Ther, 2021, 6(1): 75. DOI: 10.1038/s41392-021-00484-9.
doi: 10.1038/s41392-021-00484-9 |
[14] |
Kaneda MM, Messer KS, Ralainirina N, et al. PI3Kγ is a molecular switch that controls immune suppression[J]. Nature, 2016, 539(7629): 437-442. DOI: 10.1038/nature19834.
doi: 10.1038/nature19834 |
[15] |
Kaneda MM, Cappello P, Nguyen AV, et al. Macrophage PI3Kγ drives pancreatic ductal adenocarcinoma progression[J]. Cancer Discov, 2016, 6(8): 870-885. DOI: 10.1158/2159-8290.CD-15-1346.
doi: 10.1158/2159-8290.CD-15-1346 pmid: 27179037 |
[16] |
Yang C, Chen C, Xiao Q, et al. Relationship between PTEN and angiogenesis of esophageal squamous cell carcinoma and the underlying mechanism[J]. Front Oncol, 2021, 11: 739297. DOI: 10.3389/fonc.2021.739297.
doi: 10.3389/fonc.2021.739297 |
[17] |
Shen M, Wang J, Yu W, et al. A novel MDSC-induced PD-1-PD-L1+ B-cell subset in breast tumor microenvironment possesses immuno-suppressive properties[J]. Oncoimmunology, 2018, 7(4): e1413520. DOI: 10.1080/2162402X.2017.1413520.
doi: 10.1080/2162402X.2017.1413520 |
[18] |
Veglia F, Sanseviero E, Gabrilovich DI. Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity[J]. Nat Rev Immunol, 2021, 21(8): 485-498. DOI: 10.1038/s41577-020-00490-y.
doi: 10.1038/s41577-020-00490-y pmid: 33526920 |
[19] |
Motz GT, Santoro SP, Wang LP, et al. Tumor endothelium FasL establishes a selective immune barrier promoting tolerance in tumors[J]. Nat Med, 2014, 20(6): 607-615. DOI: 10.1038/nm.3541.
doi: 10.1038/nm.3541 pmid: 24793239 |
[20] |
Joyce JA, Fearon DT. T cell exclusion, immune privilege, and the tumor microenvironment[J]. Science, 2015, 348(6230): 74-80. DOI: 10.1126/science.aaa6204.
doi: 10.1126/science.aaa6204 pmid: 25838376 |
[21] |
Chang CZ, Wu SC, Chang CM, et al. Arctigenin, a potent ingre-dient of Arctium lappa L., induces endothelial nitric oxide synthase and attenuates subarachnoid hemorrhage-induced vasospasm through PI3K/Akt pathway in a rat model[J]. Biomed Res Int, 2015, 2015: 490209. DOI: 10.1155/2015/490209.
doi: 10.1155/2015/490209 |
[22] | Shen W, Li HL, Liu L, et al. Expression levels of PTEN, HIF-1α, and VEGF as prognostic factors in ovarian cancer[J]. Eur Rev Med Pharmacol Sci, 2017, 21(11): 2596-2603. |
[23] |
Peng W, Chen JQ, Liu C, et al. Loss of PTEN promotes resistance to T cell-mediated immunotherapy[J]. Cancer Discov, 2016, 6(2): 202-216. DOI: 10.1158/2159-8290.CD-15-0283.
doi: 10.1158/2159-8290.CD-15-0283 pmid: 26645196 |
[24] |
Lastwika KJ, Wilson W 3rd, Li QK, et al. Control of PD-L1 expression by oncogenic activation of the AKT-mTOR pathway in non-small cell lung cancer[J]. Cancer Res, 2016, 76(2): 227-238. DOI: 10.1158/0008-5472.CAN-14-3362.
doi: 10.1158/0008-5472.CAN-14-3362 pmid: 26637667 |
[25] |
Gao Y, Yang J, Cai Y, et al. IFN-γ-mediated inhibition of lung cancer correlates with PD-L1 expression and is regulated by PI3K-AKT signaling[J]. Int J Cancer, 2018, 143(4): 931-943. DOI: 10.1002/ijc.31357.
doi: 10.1002/ijc.31357 pmid: 29516506 |
[26] |
Sun C, Mezzadra R, Schumacher TN. Regulation and function of the PD-L1 checkpoint[J]. Immunity, 2018, 48(3): 434-452. DOI: 10.1016/j.immuni.2018.03.014.
doi: S1074-7613(18)30090-6 pmid: 29562194 |
[27] |
Yao X, Tu Y, Xu Y, et al. Endoplasmic reticulum stress-induced exosomal miR-27a-3p promotes immune escape in breast cancer via regulating PD-L1 expression in macrophages[J]. J Cell Mol Med, 2020, 24(17): 9560-9573. DOI: 10.1111/jcmm.15367.
doi: 10.1111/jcmm.15367 |
[28] |
Mansour FA, Al-Mazrou A, Al-Mohanna F, et al. PD-L1 is overexpressed on breast cancer stem cells through notch3/mTOR axis[J]. Oncoimmunology, 2020, 9(1): 1729299. DOI: 10.1080/2162402X.2020.1729299.
doi: 10.1080/2162402X.2020.1729299 |
[29] |
Li X, Wenes M, Romero P, et al. Navigating metabolic pathways to enhance antitumour immunity and immunotherapy[J]. Nat Rev Clin Oncol, 2019, 16(7): 425-441. DOI: 10.1038/s41571-019-0203-7.
doi: 10.1038/s41571-019-0203-7 pmid: 30914826 |
[30] |
Scharping NE, Menk AV, Moreci RS, et al. The tumor microenvironment represses T cell mitochondrial biogenesis to drive intratumoral T cell metabolic insufficiency and dysfunction[J]. Immunity, 2016, 45(3): 701-703. DOI: 10.1016/j.immuni.2016.08.009.
doi: S1074-7613(16)30333-8 pmid: 27653602 |
[31] |
Lim S, Liu H, Madeira da Silva L, et al. Immunoregulatory protein B7-H3 reprograms glucose metabolism in cancer cells by ROS-mediated stabilization of HIF1α[J]. Cancer Res, 2016, 76(8): 2231-2242. DOI: 10.1158/0008-5472.CAN-15-1538.
doi: 10.1158/0008-5472.CAN-15-1538 pmid: 27197253 |
[32] |
Katheder NS, Khezri R, O'Farrell F, et al. Microenvironmental autophagy promotes tumour growth[J]. Nature, 2017, 541(7637): 417-420. DOI: 10.1038/nature20815.
doi: 10.1038/nature20815 |
[33] |
Verhoeven J, Baelen J, Agrawal M, et al. Endothelial cell autophagy in homeostasis and cancer[J]. FEBS Lett, 2021, 595(11): 1497-1511. DOI: 10.1002/1873-3468.14087.
doi: 10.1002/1873-3468.14087 pmid: 33837545 |
[34] |
Janku F, McConkey DJ, Hong DS, et al. Autophagy as a target for anticancer therapy[J]. Nat Rev Clin Oncol, 2011, 8(9): 528-539. DOI: 10.1038/nrclinonc.2011.71.
doi: 10.1038/nrclinonc.2011.71 pmid: 21587219 |
[35] |
Xu Z, Han X, Ou D, et al. Targeting PI3K/AKT/mTOR-mediated autophagy for tumor therapy[J]. Appl Microbiol Biotechnol, 2020, 104(2): 575-587. DOI: 10.1007/s00253-019-10257-8.
doi: 10.1007/s00253-019-10257-8 pmid: 31832711 |
[36] |
Yamamoto K, Venida A, Yano J, et al. Autophagy promotes immune evasion of pancreatic cancer by degrading MHC-Ⅰ[J]. Nature, 2020, 581(7806): 100-105. DOI: 10.1038/s41586-020-2229-5.
doi: 10.1038/s41586-020-2229-5 |
[37] |
Jabbarzadeh Kaboli P, Salimian F, Aghapour S, et al. Akt-targeted therapy as a promising strategy to overcome drug resistance in breast cancer—a comprehensive review from chemotherapy to immunotherapy[J]. Pharmacol Res, 2020, 156: 104806. DOI: 10.1016/j.phrs.2020.104806.
doi: 10.1016/j.phrs.2020.104806 |
[1] | Liu Na, Kou Jieli, Yang Feng, Liu Taotao, Li Danping, Han Junrui, Yang Lizhou. Clinical value of serum miR-106b-5p and miR-760 combined with low-dose spiral CT in the diagnosis of early lung cancer [J]. Journal of International Oncology, 2024, 51(6): 321-325. |
[2] | Yang Mi, Bie Jun, Zhang Jiayong, Deng Jiaxiu, Tang Zuge, Lu Jun. Analysis of the efficacy and prognosis of neoadjuvant therapy for locally advanced resectable esophageal cancer [J]. Journal of International Oncology, 2024, 51(6): 332-337. |
[3] | Yuan Jian, Huang Yanhua. Diagnostic value of Hp-IgG antibody combined with serum DKK1 and sB7-H3 in early gastric cancer [J]. Journal of International Oncology, 2024, 51(6): 338-343. |
[4] | Chen Hongjian, Zhang Suqing. Study on the relationship between serum miR-24-3p, H2AFX and clinical pathological features and postoperative recurrence in liver cancer patients [J]. Journal of International Oncology, 2024, 51(6): 344-349. |
[5] | Guo Zehao, Zhang Junwang. Role of PFDN and its subunits in tumorigenesis and tumor development [J]. Journal of International Oncology, 2024, 51(6): 350-353. |
[6] | Zhang Baihong, Yue Hongyun. Advances in anti-tumor drugs with new mechanisms of action [J]. Journal of International Oncology, 2024, 51(6): 354-358. |
[7] | Xu Fenglin, Wu Gang. Research progress of EBV in tumor immune microenvironment and immunotherapy of nasopharyngeal carcinoma [J]. Journal of International Oncology, 2024, 51(6): 359-363. |
[8] | Wang Ying, Liu Nan, Guo Bing. Advances of antibody-drug conjugate in the therapy of metastatic breast cancer [J]. Journal of International Oncology, 2024, 51(6): 364-369. |
[9] | Zhang Rui, Chu Yanliu. Research progress of colorectal cancer risk assessment models based on FIT and gut microbiota [J]. Journal of International Oncology, 2024, 51(6): 370-375. |
[10] | Gao Fan, Wang Ping, Du Chao, Chu Yanliu. Research progress on intestinal flora and non-surgical treatment of the colorectal cancer [J]. Journal of International Oncology, 2024, 51(6): 376-381. |
[11] | Fan Zhipeng, Yu Jing, Hu Jing, Liao Zhengkai, Xu Yu, Ouyang Wen, Xie Conghua. Predictive value of changes in inflammatory markers for prognosis in patients with advanced non-small cell lung cancer treated with the first-line immunotherapy plus chemotherapy [J]. Journal of International Oncology, 2024, 51(5): 257-266. |
[12] | Liu Jing, Liu Qin, Huang Mei. Prognostic model construction of lung infection in patients with chemoradiotherapy for esophageal cancer based on SMOTE algorithm [J]. Journal of International Oncology, 2024, 51(5): 267-273. |
[13] | Yang Lin, Lu Ning, Wen Hua, Zhang Mingxin, Zhu Lin. Study on the clinical relationship between inflammatory burden index and gastric cancer [J]. Journal of International Oncology, 2024, 51(5): 274-279. |
[14] | Wang Junyi, Hong Kaibin, Ji Rongjia, Chen Dachao. Effect of cancer nodules on liver metastases after radical resection of colorectal cancer [J]. Journal of International Oncology, 2024, 51(5): 280-285. |
[15] | Zhang Ningning, Yang Zhe, Tan Limei, Li Zhenning, Wang Di, Wei Yongzhi. Diagnostic value of cervical cell DNA ploidy analysis combined with B7-H4 and PKCδ for cervical cancer [J]. Journal of International Oncology, 2024, 51(5): 286-291. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||