
Journal of International Oncology ›› 2022, Vol. 49 ›› Issue (11): 677-680.doi: 10.3760/cma.j.cn371439-20220612-00133
• Reviews • Previous Articles Next Articles
Received:2022-06-12
															
							
																	Revised:2022-09-22
															
							
															
							
																	Online:2022-11-08
															
							
																	Published:2022-12-06
															
						Contact:
								Lu Dan   
																	E-mail:doctorlu1972@163.com
																					Supported by:Li Yingjue, Lu Dan. Mechanism of PI3K pathway in tumor immune microenvironment[J]. Journal of International Oncology, 2022, 49(11): 677-680.
| [1] |  
											 Roma-Rodrigues C, Mendes R, Baptista PV, et al.  Targeting tumor microenvironment for cancer therapy[J]. Int J Mol Sci, 2019, 20(4): 840. DOI: 10.3390/ijms20040840. 
																							 doi: 10.3390/ijms20040840  | 
										
| [2] |  
											 O'Donnell JS, Teng MWL, Smyth MJ. Cancer immunoediting and resistance to T cell-based immunotherapy[J]. Nat Rev Clin Oncol, 2019, 16(3): 151-167. DOI: 10.1038/s41571-018-0142-8. 
																							 doi: 10.1038/s41571-018-0142-8 pmid: 30523282  | 
										
| [3] |  
											 Topalian SL, Hodi FS, Brahmer JR, et al.  Safety, activity, and immune correlates of anti-PD-1 antibody in cancer[J]. N Engl J Med, 2012, 366(26): 2443-2454. DOI: 10.1056/NEJMoa1200690. 
																							 doi: 10.1056/NEJMoa1200690  | 
										
| [4] |  
											 Wu X, Gu Z, Chen Y, et al.  Application of PD-1 blockade in cancer immunotherapy[J]. Comput Struct Biotechnol J, 2019, 17: 661-674. DOI: 10.1016/j.csbj.2019.03.006. 
																							 doi: 10.1016/j.csbj.2019.03.006  | 
										
| [5] |  
											 Zappasodi R, Merghoub T, Wolchok JD. Emerging concepts for immune checkpoint blockade-based combination therapies[J]. Cancer Cell, 2018, 33(4): 581-598. DOI: 10.1016/j.ccell.2018.03.005. 
																							 doi: S1535-6108(18)30109-0 pmid: 29634946  | 
										
| [6] |  
											 Ramapriyan R, Caetano MS, Barsoumian HB, et al.  Altered cancer metabolism in mechanisms of immunotherapy resistance[J]. Pharmacol Ther, 2019, 195: 162-171. DOI: 10.1016/j.pharmthera.2018.11.004. 
																							 doi: 10.1016/j.pharmthera.2018.11.004  | 
										
| [7] |  
											 du Rusquec P, Blonz C, Frenel JS, et al.  Targeting the PI3K/Akt/mTOR pathway in estrogen-receptor positive HER2 negative advanced breast cancer[J]. Ther Adv Med Oncol, 2020, 12: 1758835920940939. DOI: 10.1177/1758835920940939. 
																							 doi: 10.1177/1758835920940939  | 
										
| [8] |  
											 Vanhaesebroeck B, Perry MWD, Brown JR, et al.  PI3K inhibitors are finally coming of age[J]. Nat Rev Drug Discov, 2021, 20(10): 741-769. DOI: 10.1038/s41573-021-00209-1. 
																							 doi: 10.1038/s41573-021-00209-1 pmid: 34127844  | 
										
| [9] |  
											 Fruman DA, Chiu H, Hopkins BD, et al.  The PI3K pathway in human disease[J]. Cell, 2017, 170(4): 605-635. DOI: 10.1016/j.cell.2017.07.029. 
																							 doi: S0092-8674(17)30865-6 pmid: 28802037  | 
										
| [10] |  
											 Hanahan D. Hallmarks of cancer: new dimensions[J]. Cancer Discov, 2022, 12(1): 31-46. DOI: 10.1158/2159-8290.CD-21-1059. 
																							 doi: 10.1158/2159-8290.CD-21-1059 pmid: 35022204  | 
										
| [11] |  
											 Liu M, Wei F, Wang J, et al.  Myeloid-derived suppressor cells regulate the immunosuppressive functions of PD-1-PD-L1+Bregs through PD-L1/PI3K/AKT/NF-κB axis in breast cancer[J]. Cell Death Dis, 2021, 12(5): 465. DOI: 10.1038/s41419-021-03745-1. 
																							 doi: 10.1038/s41419-021-03745-1  | 
										
| [12] |  
											 Farhood B, Najafi M, Mortezaee K. CD8+ cytotoxic T lymphocytes in cancer immunotherapy: a review[J]. J Cell Physiol, 2019, 234(6): 8509-8521. DOI: 10.1002/jcp.27782. 
																							 doi: 10.1002/jcp.27782 pmid: 30520029  | 
										
| [13] |  
											 Xiang X, Wang J, Lu D, et al.  Targeting tumor-associated macrophages to synergize tumor immunotherapy[J]. Signal Transduct Target Ther, 2021, 6(1): 75. DOI: 10.1038/s41392-021-00484-9. 
																							 doi: 10.1038/s41392-021-00484-9  | 
										
| [14] |  
											 Kaneda MM, Messer KS, Ralainirina N, et al.  PI3Kγ is a molecular switch that controls immune suppression[J]. Nature, 2016, 539(7629): 437-442. DOI: 10.1038/nature19834. 
																							 doi: 10.1038/nature19834  | 
										
| [15] |  
											 Kaneda MM, Cappello P, Nguyen AV, et al.  Macrophage PI3Kγ drives pancreatic ductal adenocarcinoma progression[J]. Cancer Discov, 2016, 6(8): 870-885. DOI: 10.1158/2159-8290.CD-15-1346. 
																							 doi: 10.1158/2159-8290.CD-15-1346 pmid: 27179037  | 
										
| [16] |  
											 Yang C, Chen C, Xiao Q, et al.  Relationship between PTEN and angiogenesis of esophageal squamous cell carcinoma and the underlying mechanism[J]. Front Oncol, 2021, 11: 739297. DOI: 10.3389/fonc.2021.739297. 
																							 doi: 10.3389/fonc.2021.739297  | 
										
| [17] |  
											 Shen M, Wang J, Yu W, et al.  A novel MDSC-induced PD-1-PD-L1+ B-cell subset in breast tumor microenvironment possesses immuno-suppressive properties[J]. Oncoimmunology, 2018, 7(4): e1413520. DOI: 10.1080/2162402X.2017.1413520. 
																							 doi: 10.1080/2162402X.2017.1413520  | 
										
| [18] |  
											 Veglia F, Sanseviero E, Gabrilovich DI. Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity[J]. Nat Rev Immunol, 2021, 21(8): 485-498. DOI: 10.1038/s41577-020-00490-y. 
																							 doi: 10.1038/s41577-020-00490-y pmid: 33526920  | 
										
| [19] |  
											 Motz GT, Santoro SP, Wang LP, et al.  Tumor endothelium FasL establishes a selective immune barrier promoting tolerance in tumors[J]. Nat Med, 2014, 20(6): 607-615. DOI: 10.1038/nm.3541. 
																							 doi: 10.1038/nm.3541 pmid: 24793239  | 
										
| [20] |  
											 Joyce JA, Fearon DT. T cell exclusion, immune privilege, and the tumor microenvironment[J]. Science, 2015, 348(6230): 74-80. DOI: 10.1126/science.aaa6204. 
																							 doi: 10.1126/science.aaa6204 pmid: 25838376  | 
										
| [21] |  
											 Chang CZ, Wu SC, Chang CM, et al.  Arctigenin, a potent ingre-dient of Arctium lappa L., induces endothelial nitric oxide synthase and attenuates subarachnoid hemorrhage-induced vasospasm through PI3K/Akt pathway in a rat model[J]. Biomed Res Int, 2015, 2015: 490209. DOI: 10.1155/2015/490209. 
																							 doi: 10.1155/2015/490209  | 
										
| [22] | Shen W, Li HL, Liu L, et al. Expression levels of PTEN, HIF-1α, and VEGF as prognostic factors in ovarian cancer[J]. Eur Rev Med Pharmacol Sci, 2017, 21(11): 2596-2603. | 
| [23] |  
											 Peng W, Chen JQ, Liu C, et al.  Loss of PTEN promotes resistance to T cell-mediated immunotherapy[J]. Cancer Discov, 2016, 6(2): 202-216. DOI: 10.1158/2159-8290.CD-15-0283. 
																							 doi: 10.1158/2159-8290.CD-15-0283 pmid: 26645196  | 
										
| [24] |  
											 Lastwika KJ, Wilson W 3rd, Li QK, et al.  Control of PD-L1 expression by oncogenic activation of the AKT-mTOR pathway in non-small cell lung cancer[J]. Cancer Res, 2016, 76(2): 227-238. DOI: 10.1158/0008-5472.CAN-14-3362. 
																							 doi: 10.1158/0008-5472.CAN-14-3362 pmid: 26637667  | 
										
| [25] |  
											 Gao Y, Yang J, Cai Y, et al.  IFN-γ-mediated inhibition of lung cancer correlates with PD-L1 expression and is regulated by PI3K-AKT signaling[J]. Int J Cancer, 2018, 143(4): 931-943. DOI: 10.1002/ijc.31357. 
																							 doi: 10.1002/ijc.31357 pmid: 29516506  | 
										
| [26] |  
											 Sun C, Mezzadra R, Schumacher TN. Regulation and function of the PD-L1 checkpoint[J]. Immunity, 2018, 48(3): 434-452. DOI: 10.1016/j.immuni.2018.03.014. 
																							 doi: S1074-7613(18)30090-6 pmid: 29562194  | 
										
| [27] |  
											 Yao X, Tu Y, Xu Y, et al.  Endoplasmic reticulum stress-induced exosomal miR-27a-3p promotes immune escape in breast cancer via regulating PD-L1 expression in macrophages[J]. J Cell Mol Med, 2020, 24(17): 9560-9573. DOI: 10.1111/jcmm.15367. 
																							 doi: 10.1111/jcmm.15367  | 
										
| [28] |  
											 Mansour FA, Al-Mazrou A, Al-Mohanna F, et al.  PD-L1 is overexpressed on breast cancer stem cells through notch3/mTOR axis[J]. Oncoimmunology, 2020, 9(1): 1729299. DOI: 10.1080/2162402X.2020.1729299. 
																							 doi: 10.1080/2162402X.2020.1729299  | 
										
| [29] |  
											 Li X, Wenes M, Romero P, et al.  Navigating metabolic pathways to enhance antitumour immunity and immunotherapy[J]. Nat Rev Clin Oncol, 2019, 16(7): 425-441. DOI: 10.1038/s41571-019-0203-7. 
																							 doi: 10.1038/s41571-019-0203-7 pmid: 30914826  | 
										
| [30] |  
											 Scharping NE, Menk AV, Moreci RS, et al.  The tumor microenvironment represses T cell mitochondrial biogenesis to drive intratumoral T cell metabolic insufficiency and dysfunction[J]. Immunity, 2016, 45(3): 701-703. DOI: 10.1016/j.immuni.2016.08.009. 
																							 doi: S1074-7613(16)30333-8 pmid: 27653602  | 
										
| [31] |  
											 Lim S, Liu H, Madeira da Silva L, et al.  Immunoregulatory protein B7-H3 reprograms glucose metabolism in cancer cells by ROS-mediated stabilization of HIF1α[J]. Cancer Res, 2016, 76(8): 2231-2242. DOI: 10.1158/0008-5472.CAN-15-1538. 
																							 doi: 10.1158/0008-5472.CAN-15-1538 pmid: 27197253  | 
										
| [32] |  
											 Katheder NS, Khezri R, O'Farrell F, et al.  Microenvironmental autophagy promotes tumour growth[J]. Nature, 2017, 541(7637): 417-420. DOI: 10.1038/nature20815. 
																							 doi: 10.1038/nature20815  | 
										
| [33] |  
											 Verhoeven J, Baelen J, Agrawal M, et al.  Endothelial cell autophagy in homeostasis and cancer[J]. FEBS Lett, 2021, 595(11): 1497-1511. DOI: 10.1002/1873-3468.14087. 
																							 doi: 10.1002/1873-3468.14087 pmid: 33837545  | 
										
| [34] |  
											 Janku F, McConkey DJ, Hong DS, et al.  Autophagy as a target for anticancer therapy[J]. Nat Rev Clin Oncol, 2011, 8(9): 528-539. DOI: 10.1038/nrclinonc.2011.71. 
																							 doi: 10.1038/nrclinonc.2011.71 pmid: 21587219  | 
										
| [35] |  
											 Xu Z, Han X, Ou D, et al.  Targeting PI3K/AKT/mTOR-mediated autophagy for tumor therapy[J]. Appl Microbiol Biotechnol, 2020, 104(2): 575-587. DOI: 10.1007/s00253-019-10257-8. 
																							 doi: 10.1007/s00253-019-10257-8 pmid: 31832711  | 
										
| [36] |  
											 Yamamoto K, Venida A, Yano J, et al.  Autophagy promotes immune evasion of pancreatic cancer by degrading MHC-Ⅰ[J]. Nature, 2020, 581(7806): 100-105. DOI: 10.1038/s41586-020-2229-5. 
																							 doi: 10.1038/s41586-020-2229-5  | 
										
| [37] |  
											 Jabbarzadeh Kaboli P, Salimian F, Aghapour S, et al.  Akt-targeted therapy as a promising strategy to overcome drug resistance in breast cancer—a comprehensive review from chemotherapy to immunotherapy[J]. Pharmacol Res, 2020, 156: 104806. DOI: 10.1016/j.phrs.2020.104806. 
																							 doi: 10.1016/j.phrs.2020.104806  | 
										
| [1] | Liu Na, Kou Jieli, Yang Feng, Liu Taotao, Li Danping, Han Junrui, Yang Lizhou. Clinical value of serum miR-106b-5p and miR-760 combined with low-dose spiral CT in the diagnosis of early lung cancer [J]. Journal of International Oncology, 2024, 51(6): 321-325. | 
| [2] | Yang Mi, Bie Jun, Zhang Jiayong, Deng Jiaxiu, Tang Zuge, Lu Jun. Analysis of the efficacy and prognosis of neoadjuvant therapy for locally advanced resectable esophageal cancer [J]. Journal of International Oncology, 2024, 51(6): 332-337. | 
| [3] | Yuan Jian, Huang Yanhua. Diagnostic value of Hp-IgG antibody combined with serum DKK1 and sB7-H3 in early gastric cancer [J]. Journal of International Oncology, 2024, 51(6): 338-343. | 
| [4] | Chen Hongjian, Zhang Suqing. Study on the relationship between serum miR-24-3p, H2AFX and clinical pathological features and postoperative recurrence in liver cancer patients [J]. Journal of International Oncology, 2024, 51(6): 344-349. | 
| [5] | Guo Zehao, Zhang Junwang. Role of PFDN and its subunits in tumorigenesis and tumor development [J]. Journal of International Oncology, 2024, 51(6): 350-353. | 
| [6] | Zhang Baihong, Yue Hongyun. Advances in anti-tumor drugs with new mechanisms of action [J]. Journal of International Oncology, 2024, 51(6): 354-358. | 
| [7] | Xu Fenglin, Wu Gang. Research progress of EBV in tumor immune microenvironment and immunotherapy of nasopharyngeal carcinoma [J]. Journal of International Oncology, 2024, 51(6): 359-363. | 
| [8] | Wang Ying, Liu Nan, Guo Bing. Advances of antibody-drug conjugate in the therapy of metastatic breast cancer [J]. Journal of International Oncology, 2024, 51(6): 364-369. | 
| [9] | Zhang Rui, Chu Yanliu. Research progress of colorectal cancer risk assessment models based on FIT and gut microbiota [J]. Journal of International Oncology, 2024, 51(6): 370-375. | 
| [10] | Gao Fan, Wang Ping, Du Chao, Chu Yanliu. Research progress on intestinal flora and non-surgical treatment of the colorectal cancer [J]. Journal of International Oncology, 2024, 51(6): 376-381. | 
| [11] | Fan Zhipeng, Yu Jing, Hu Jing, Liao Zhengkai, Xu Yu, Ouyang Wen, Xie Conghua. Predictive value of changes in inflammatory markers for prognosis in patients with advanced non-small cell lung cancer treated with the first-line immunotherapy plus chemotherapy [J]. Journal of International Oncology, 2024, 51(5): 257-266. | 
| [12] | Liu Jing, Liu Qin, Huang Mei. Prognostic model construction of lung infection in patients with chemoradiotherapy for esophageal cancer based on SMOTE algorithm [J]. Journal of International Oncology, 2024, 51(5): 267-273. | 
| [13] | Yang Lin, Lu Ning, Wen Hua, Zhang Mingxin, Zhu Lin. Study on the clinical relationship between inflammatory burden index and gastric cancer [J]. Journal of International Oncology, 2024, 51(5): 274-279. | 
| [14] | Wang Junyi, Hong Kaibin, Ji Rongjia, Chen Dachao. Effect of cancer nodules on liver metastases after radical resection of colorectal cancer [J]. Journal of International Oncology, 2024, 51(5): 280-285. | 
| [15] | Zhang Ningning, Yang Zhe, Tan Limei, Li Zhenning, Wang Di, Wei Yongzhi. Diagnostic value of cervical cell DNA ploidy analysis combined with B7-H4 and PKCδ for cervical cancer [J]. Journal of International Oncology, 2024, 51(5): 286-291. | 
| Viewed | ||||||
| 
										Full text | 
									
										 | 
								|||||
| 
										Abstract | 
									
										 | 
								|||||
