Journal of International Oncology ›› 2022, Vol. 49 ›› Issue (3): 173-176.doi: 10.3760/cma.j.cn371439-20210922-00029
• Reviews • Previous Articles Next Articles
Zeng Yan1, Luo Pan1, Wang Ziqi1, Wu Weili1,2,3()
Received:
2021-09-22
Revised:
2021-10-07
Online:
2022-03-08
Published:
2022-03-22
Contact:
Wu Weili
E-mail:wwlmhy@163.com
Supported by:
Zeng Yan, Luo Pan, Wang Ziqi, Wu Weili. Mechanism of drug induced ferroptosis in the treatment of head and neck tumors[J]. Journal of International Oncology, 2022, 49(3): 173-176.
[1] |
Johnson DE, Burtness B, Leemans CR, et al. Head and neck squamous cell carcinoma[J]. Nat Rev Dis Primers, 2020, 6(1):92. DOI: 10.1038/s41572-020-00224-3.
doi: 10.1038/s41572-020-00224-3 pmid: 33243986 |
[2] |
Stockwell BR, Jiang X, Gu W. Emerging mechanisms and disease relevance of ferroptosis[J]. Trends Cell Biol, 2020, 30(6):478-490. DOI: 10.1016/j.tcb.2020.02.009.
doi: S0962-8924(20)30054-4 pmid: 32413317 |
[3] |
Xie Y, Hou W, Song X, et al. Ferroptosis: process and function[J]. Cell Death Differ, 2016, 23(3):369-379. DOI: 10.1038/cdd.2015.158.
doi: 10.1038/cdd.2015.158 pmid: 26794443 |
[4] |
Hassannia B, Vandenabeele P, Vanden Berghe T. Targeting ferroptosis to iron out cancer[J]. Cancer Cell, 2019, 35(6):830-849. DOI: 10.1016/j.ccell.2019.04.002.
doi: S1535-6108(19)30197-7 pmid: 31105042 |
[5] |
Alvarez SW, Sviderskiy VO, Terzi EM, et al. NFS1 undergoes positive selection in lung tumours and protects cells from ferroptosis[J]. Nature, 2017, 551(7682):639-643. DOI: 10.1038/nature24637.
doi: 10.1038/nature24637 |
[6] |
Seiler A, Schneider M, Förster H, et al. Glutathione peroxidase 4 senses and translates oxidative stress into 12/15-lipoxygenase depen-dent- and AIF-mediated cell death[J]. Cell Metab, 2008, 8(3):237-248. DOI: 10.1016/j.cmet.2008.07.005.
doi: 10.1016/j.cmet.2008.07.005 |
[7] |
Efferth T. From ancient herb to modern drug: artemisia annua and artemisinin for cancer therapy[J]. Semin Cancer Biol, 2017, 46:65-83. DOI: 10.1016/j.semcancer.2017.02.009.
doi: S1044-579X(17)30029-9 pmid: 28254675 |
[8] |
Lin R, Zhang Z, Chen L, et al. Dihydroartemisinin (DHA) induces ferroptosis and causes cell cycle arrest in head and neck carcinoma cells[J]. Cancer Lett, 2016, 381(1):165-175. DOI: 10.1016/j.canlet.2016.07.033.
doi: 10.1016/j.canlet.2016.07.033 |
[9] |
Roh JL, Kim EH, Jang H, et al. Nrf2 inhibition reverses the resis-tance of cisplatin-resistant head and neck cancer cells to artesunate-induced ferroptosis[J]. Redox Biol, 2017, 11:254-262. DOI: 10.1016/j.redox.2016.12.010.
doi: 10.1016/j.redox.2016.12.010 |
[10] |
Zhang W, Bhagwath AS, Ramzan Z, et al. Itraconazole exerts its antitumor effect in esophageal cancer by suppressing the HER2/AKT signaling pathway[J]. Mol Cancer Ther, 2021, 20(10):1904-1915. DOI: 10.1158/1535-7163.MCT-20-0638.
doi: 10.1158/1535-7163.MCT-20-0638 pmid: 34376577 |
[11] |
Takahashi S, Karayama M, Takahashi M, et al. Pharmacokinetics, safety, and efficacy of trastuzumab deruxtecan with concomitant ritonavir or itraconazole in patients with HER2-expressing advanced solid tumors[J]. Clin Cancer Res, 2021, 27(21):5771-5780. DOI: 10.1158/1078-0432.CCR-21-1560.
doi: 10.1158/1078-0432.CCR-21-1560 |
[12] |
Buczacki SJA, Popova S, Biggs E, et al. Itraconazole targets cell cycle heterogeneity in colorectal cancer[J]. J Exp Med, 2018, 215(7):1891-1912. DOI: 10.1084/jem.20171385.
doi: 10.1084/jem.20171385 |
[13] |
Gerber DE, Putnam WC, Fattah FJ, et al. Concentration-dependent early antivascular and antitumor effects of itraconazole in non-small cell lung cancer[J]. Clin Cancer Res, 2020, 26(22):6017-6027. DOI: 10.1158/1078-0432.CCR-20-1916.
doi: 10.1158/1078-0432.CCR-20-1916 |
[14] |
Xu Y, Wang Q, Li X, et al. Itraconazole attenuates the stemness of nasopharyngeal carcinoma cells via triggering ferroptosis[J]. Environ Toxicol, 2021, 36(2):257-266. DOI: 10.1002/tox.23031.
doi: 10.1002/tox.23031 |
[15] |
Zhao B, Li X, Wang Y, et al. Iron-dependent cell death as executioner of cancer stem cells[J]. J Exp Clin Cancer Res, 2018, 37(1):79. DOI: 10.1186/s13046-018-0733-3.
doi: 10.1186/s13046-018-0733-3 |
[16] |
Ji X, Qian J, Rahman SMJ, et al. xCT (SLC7A11)-mediated metabolic reprogramming promotes non-small cell lung cancer progression[J]. Oncogene, 2018, 37(36):5007-5019. DOI: 10.1038/s41388-018-0307-z.
doi: 10.1038/s41388-018-0307-z |
[17] |
Shin D, Kim EH, Lee J, et al. Nrf2 inhibition reverses resistance to GPX4 inhibitor-induced ferroptosis in head and neck cancer[J]. Free Radic Biol Med, 2018, 129:454-462. DOI: 10.1016/j.freeradbiomed.2018.10.426.
doi: 10.1016/j.freeradbiomed.2018.10.426 |
[18] |
Pouillon L, Bossuyt P, Vanderstukken J, et al. Management of patients with inflammatory bowel disease and spondyloarthritis[J]. Expert Rev Clin Pharmacol, 2017, 10(12):1363-1374. DOI: 10.1080/17512433.2017.1377609.
doi: 10.1080/17512433.2017.1377609 |
[19] |
Gout PW, Buckley AR, Simms CR, et al. Sulfasalazine, a potent suppressor of lymphoma growth by inhibition of the x(c)-cystine transporter: a new action for an old drug[J]. Leukemia, 2001, 15(10):1633-1640. DOI: 10.1038/sj.leu.2402238.
doi: 10.1038/sj.leu.2402238 pmid: 11587223 |
[20] |
Kim EH, Shin D, Lee J, et al. CISD2 inhibition overcomes resis-tance to sulfasalazine-induced ferroptotic cell death in head and neck cancer[J]. Cancer Lett, 2018, 432:180-190. DOI: 10.1016/j.canlet.2018.06.018.
doi: 10.1016/j.canlet.2018.06.018 |
[21] |
Yuan R, Zhao W, Wang QQ, et al. Cucurbitacin B inhibits non-small cell lung cancer in vivo and in vitro by triggering TLR4/NLRP3/GSDMD-dependent pyroptosis[J]. Pharmacol Res, 2021, 170:105748. DOI: 10.1016/j.phrs.2021.105748.
doi: 10.1016/j.phrs.2021.105748 |
[22] |
Bakar-Ates F, Ozkan E, Sengel-Turk CT. Encapsulation of cucur-bitacin B into lipid polymer hybrid nanocarriers induced apoptosis of MDAMB231 cells through PARP cleavage[J]. Int J Pharm, 2020, 586:119565. DOI: 10.1016/j.ijpharm.2020.119565.
doi: 10.1016/j.ijpharm.2020.119565 |
[23] |
Wang K, Ye H, Zhang X, et al. An exosome-like programmable-bioactivating paclitaxel prodrug nanoplatform for enhanced breast cancer metastasis inhibition[J]. Biomaterials, 2020, 257:120224. DOI: 10.1016/j.biomaterials.2020.120224.
doi: 10.1016/j.biomaterials.2020.120224 |
[24] |
Tao B, Wang D, Yang S, et al. Cucurbitacin B inhibits cell proli-feration by regulating X-inactive specific transcript expression in tongue cancer[J]. Front Oncol, 2021, 11:651648. DOI: 10.3389/fonc.2021.651648.
doi: 10.3389/fonc.2021.651648 |
[25] |
Huang S, Cao B, Zhang J, et al. Induction of ferroptosis in human nasopharyngeal cancer cells by cucurbitacin B: molecular mechanism and therapeutic potential[J]. Cell Death Dis, 2021, 12(3):237. DOI: 10.1038/s41419-021-03516-y.
doi: 10.1038/s41419-021-03516-y |
[26] |
Jiang L, Kon N, Li T, et al. Ferroptosis as a p53-mediated activity during tumour suppression[J]. Nature, 2015, 520(7545):57-62. DOI: 10.1038/nature14344.
doi: 10.1038/nature14344 |
[27] |
Ou Y, Wang SJ, Li D, et al. Activation of SAT1 engages polyamine metabolism with p53-mediated ferroptotic responses[J]. Proc Natl Acad Sci U S A, 2016, 113(44):E6806-E6812. DOI: 10.1073/pnas.1607152113.
doi: 10.1073/pnas.1607152113 |
[28] |
Wen G, Qu XX, Wang D, et al. Recent advances in design, synjournal and bioactivity of paclitaxel-mimics[J]. Fitoterapia, 2016, 110:26-37. DOI: 10.1016/j.fitote.2016.02.010.
doi: 10.1016/j.fitote.2016.02.010 |
[29] |
Ye J, Jiang X, Dong Z, et al. Low-concentration PTX and RSL3 inhibits tumor cell growth synergistically by inducing ferroptosis in mutant p53 hypopharyngeal squamous carcinoma[J]. Cancer Manag Res, 2019, 11:9783-9792. DOI: 10.2147/CMAR.S217944.
doi: 10.2147/CMAR.S217944 |
[30] |
McMahon A, Chen W, Li F. Old wine in new bottles: advanced drug delivery systems for disulfiram-based cancer therapy[J]. J Control Release, 2020, 319:352-359. DOI: 10.1016/j.jconrel.2020.01.001.
doi: 10.1016/j.jconrel.2020.01.001 |
[31] |
Li Y, Chen F, Chen J, et al. Disulfiram/copper induces antitumor activity against both nasopharyngeal cancer cells and cancer-associa-ted fibroblasts through ROS/MAPK and ferroptosis pathways[J]. Cancers (Basel), 2020, 12(1):138. DOI: 10.3390/cancers12010138.
doi: 10.3390/cancers12010138 |
[1] | Chen Qi, Xu Chenyang, Wang Yin, Lei Dapeng. Current application status of hyperspectral imaging in the diagnosis and treatment of head and neck tumor [J]. Journal of International Oncology, 2024, 51(5): 298-302. |
[2] | Wang Peixin, Zhao Jun, Xu Shihong, Jiang Zhaoyang, Wang Xiaoqiang, Yang Hongjuan. Progress of ferroptosis-related mechanisms in osteosarcoma [J]. Journal of International Oncology, 2024, 51(5): 308-311. |
[3] | Wang Zihao, Wang Yu, Yang Xin, He Yi, Mo Xingkui, Yuan Tao. Research progress on the molecular mechanism and related treatments of ferroptosis in osteosarcoma [J]. Journal of International Oncology, 2024, 51(4): 239-244. |
[4] | Cui Tenglu, Lyu lu, Sun Pengfei. Application of radiotherapy combined with immunotherapy in the treatment of head and neck squamous cell carcinoma [J]. Journal of International Oncology, 2023, 50(9): 548-552. |
[5] | Chen Xinyi, Weng Yiming, Wei Jiayan, Wang Jinsong, Peng Min. Advances in immune checkpoint inhibitors in the treatment of recurrent or metastatic head and neck squamous cell carcinoma [J]. Journal of International Oncology, 2023, 50(9): 553-557. |
[6] | Ju Yifan, Xu Chenyang, Lei Dapeng. Research progress of pathomics in head and neck neoplasms [J]. Journal of International Oncology, 2023, 50(5): 294-298. |
[7] | Chen Yi, Han Liang, Cai Li. Multivariate analysis of chemotherapy induced oral mucositis in patients with head and neck tumors [J]. Journal of International Oncology, 2022, 49(9): 521-525. |
[8] | Wang Liwei, Liang Hongsheng, Du Songlin, Chen Zhihao, Wang Qing, Gao Aili. Research progress of avermectins in anti-tumor [J]. Journal of International Oncology, 2022, 49(6): 353-356. |
[9] | Pang Jingdan, Du Yingying, Da Jie. Adverse reactions and treatment measures of advanced solid tumors treated with antibody-drug conjugates [J]. Journal of International Oncology, 2022, 49(4): 220-224. |
[10] | Zhou Xinyu, Jia Xiuhong. Research progress of ferroptosis in the treatment of leukemia [J]. Journal of International Oncology, 2022, 49(12): 759-762. |
[11] | Lao Zheng, Tu Wenyong, Xu Xuanli, Zhang Lin, Shao Ziyang, Shi Huifeng. Nimotuzumab combined with definitive radiotherapy for inoperable locally advanced oral and maxillofacial squamous cell carcinoma [J]. Journal of International Oncology, 2022, 49(11): 665-670. |
[12] | Yang Chi, Luo Changjiang. Research progress on the background of inflammation, immunity and cholesterol metabolism in colorectal cancer [J]. Journal of International Oncology, 2022, 49(10): 630-634. |
[13] | Guo Shihao, Ren Yeqing, Guo Geng. Molecular mechanism of vasculogenic mimicry in brain glioma [J]. Journal of International Oncology, 2021, 48(6): 362-365. |
[14] | Wei Yongjian, Hu Jinjing, Li Xun. Relationship between CDCA8 and tumor progression as well as that between CDCA8 and stemness maintenance of stem cells [J]. Journal of International Oncology, 2021, 48(4): 216-219. |
[15] | Xu Shifei, Feng Huan, Liu Haiyang, Hu Jie, Ma Lu. Effect of rotational errors on the accuracy of positioning for head-neck tumors in radiotherapy [J]. Journal of International Oncology, 2021, 48(3): 150-155. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||