Journal of International Oncology ›› 2022, Vol. 49 ›› Issue (6): 353-356.doi: 10.3760/cma.j.cn371439-20220321-00067
• Reviews • Previous Articles Next Articles
Wang Liwei1, Liang Hongsheng2, Du Songlin1, Chen Zhihao1, Wang Qing1, Gao Aili1()
Received:
2022-03-21
Revised:
2022-04-07
Online:
2022-06-08
Published:
2022-06-30
Contact:
Gao Aili
E-mail:gaoaili2004@163.com
Supported by:
Wang Liwei, Liang Hongsheng, Du Songlin, Chen Zhihao, Wang Qing, Gao Aili. Research progress of avermectins in anti-tumor[J]. Journal of International Oncology, 2022, 49(6): 353-356.
[1] |
Du Y, Shao Z, Xu Q, et al. Azobenzene-avermectin B1a derivatives for optical modulation of insect behaviors[J]. J Agric Food Chem, 2021, 69(51): 15530-15537. DOI: 10.1021/acs.jafc.1c05036.
doi: 10.1021/acs.jafc.1c05036 |
[2] |
de Melo GD, Lazarini F, Larrous F, et al. Attenuation of clinical and immunological outcomes during SARS-CoV-2 infection by ivermectin[J]. EMBO Mol Med, 2021, 13(8): e14122. DOI: 10.15252/emmm.202114122.
doi: 10.15252/emmm.202114122 |
[3] |
Popp M, Stegemann M, Metzendorf MI, et al. Ivermectin for preventing and treating COVID-19[J]. Cochrane Database Syst Rev, 2021, 7(7): CD015017. DOI: 10.1002/14651858.CD015017.pub2.
doi: 10.1002/14651858.CD015017.pub2 |
[4] |
Diao L, Tang N, Zhang C, et al. Avermectin induced DNA damage to the apoptosis and autophagy in human lung epithelial A549 cells[J]. Ecotoxicol Environ Saf, 2021, 215: 112129. DOI: 10.1016/j.ecoenv.2021.112129.
doi: 10.1016/j.ecoenv.2021.112129 |
[5] |
Liu Y, Fang S, Sun Q, et al. Anthelmintic drug ivermectin inhibits angiogenesis, growth and survival of glioblastoma through inducing mitochondrial dysfunction and oxidative stress[J]. Biochem Biophys Res Commun, 2016, 480(3): 415-421. DOI: 10.1016/j.bbrc.2016.10.064.
doi: 10.1016/j.bbrc.2016.10.064 |
[6] |
Zhang X, Qin T, Zhu Z, et al. Ivermectin augments the in vitro and in vivo efficacy of cisplatin in epithelial ovarian cancer by suppressing Akt/mTOR signaling[J]. Am J Med Sci, 2020, 359(2): 123-129. DOI: 10.1016/j.amjms.2019.11.001.
doi: 10.1016/j.amjms.2019.11.001 |
[7] |
罗丹, 罗亮, 杨志军, 等. 阿维菌素对胶质母细胞瘤U251细胞增殖、凋亡的影响及其机制探讨[J]. 山东医药, 2017, 57(27): 31-33. DOI: 10.3969/j.issn.1002-266X.2017.27.008.
doi: 10.3969/j.issn.1002-266X.2017.27.008 |
[8] | 张阳. 阿维菌素的细胞毒性及分子机理研究[D]. 上海: 华东理工大学, 2017. |
[9] |
Zhang Y, Wu J, Xu W, et al. Cytotoxic effects of Avermectin on human HepG2 cells in vitro bioassays[J]. Environ Pollut, 2017, 220(Pt B): 1127-1137. DOI: 10.1016/j.envpol.2016.11.022.
doi: 10.1016/j.envpol.2016.11.022 |
[10] |
Zhang X, Zhang G, Zhai W, et al. Inhibition of TMEM16A Ca2+-activated Cl- channels by avermectins is essential for their anticancer effects[J]. Pharmacol Res, 2020, 156: 104763. DOI: 10.1016/j.phrs.2020.104763.
doi: 10.1016/j.phrs.2020.104763 |
[11] |
Zhu S, Zhou J, Zhou Z, et al. Abamectin induces apoptosis and autophagy by inhibiting reactive oxygen species-mediated PI3K/AKT signaling in MGC803 cells[J]. J Biochem Mol Toxicol, 2019, 33(7): e22336. DOI: 10.1002/jbt.22336.
doi: 10.1002/jbt.22336 |
[12] |
Liang Y, Dong B, Pang N, et al. Abamectin induces cytotoxicity via the ROS, JNK, and ATM/ATR pathways[J]. Environ Sci Pollut Res Int, 2020, 27(12): 13726-13734. DOI: 10.1007/s11356-019-06869-2.
doi: 10.1007/s11356-019-06869-2 |
[13] |
Dominguez-Gomez G, Chavez-Blanco A, Medina-Franco JL, et al. Ivermectin as an inhibitor of cancer stem‑like cells[J]. Mol Med Rep, 2018, 17(2): 3397-3403. DOI: 10.3892/mmr.2017.8231.
doi: 10.3892/mmr.2017.8231 pmid: 29257278 |
[14] |
Zhang P, Zhang Y, Liu K, et al. Ivermectin induces cell cycle arrest and apoptosis of HeLa cells via mitochondrial pathway[J]. Cell Prolif, 2019, 52(2): e12543. DOI: 10.1111/cpr.12543.
doi: 10.1111/cpr.12543 |
[15] |
Song D, Liang H, Qu B, et al. Ivermectin inhibits the growth of glioma cells by inducing cell cycle arrest and apoptosis in vitro and in vivo[J]. J Cell Biochem, 2019, 120(1): 622-633. DOI: 10.1002/jcb.27420.
doi: 10.1002/jcb.27420 |
[16] |
Chen L, Bi S, Wei Q, et al. Ivermectin suppresses tumour growth and metastasis through degradation of PAK1 in oesophageal squamous cell carcinoma[J]. J Cell Mol Med, 2020, 24(9): 5387-5401. DOI: 10.1111/jcmm.15195.
doi: 10.1111/jcmm.15195 |
[17] |
汤月良, 邓冠群. 伊维菌素对奥沙利铂抗结肠癌耐药细胞的增效作用及其机制[J]. 解放军医学杂志, 2021, 46(6): 563-573. DOI: 10.11855/j.issn.0577-7402.2021.06.06.
doi: 10.11855/j.issn.0577-7402.2021.06.06 |
[18] |
Jiang L, Wang P, Sun YJ, et al. Ivermectin reverses the drug resistance in cancer cells through EGFR/ERK/Akt/NF-κB pathway[J]. J Exp Clin Cancer Res, 2019, 38(1): 265. DOI: 10.1186/s13046-019-1251-7.
doi: 10.1186/s13046-019-1251-7 |
[19] |
Juarez M, Schcolnik-Cabrera A, Dueñas-Gonzalez A. The multitargeted drug ivermectin: from an antiparasitic agent to a repositioned cancer drug[J]. Am J Cancer Res, 2018, 8(2): 317-331.
pmid: 29511601 |
[20] |
Draganov D, Han Z, Rana A, et al. Ivermectin converts cold tumors hot and synergizes with immune checkpoint blockade for treatment of breast cancer[J]. NPJ Breast Cancer, 2021, 7(1): 22. DOI: 10.1038/s41523-021-00229-5.
doi: 10.1038/s41523-021-00229-5 pmid: 33654071 |
[21] |
Wang K, Gao W, Dou Q, et al. Ivermectin induces PAK1-mediated cytostatic autophagy in breast cancer[J]. Autophagy, 2016, 12(12): 2498-2499. DOI: 10.1080/15548627.2016.1231494.
doi: 10.1080/15548627.2016.1231494 pmid: 27657889 |
[22] |
Dou Q, Chen HN, Wang K, et al. Ivermectin induces cytostatic autophagy by blocking the PAK1/Akt axis in breast cancer[J]. Cancer Res, 2016, 76(15): 4457-4469. DOI: 10.1158/0008-5472.CAN-15-2887.
doi: 10.1158/0008-5472.CAN-15-2887 |
[23] |
Gallardo F, Mariamé B, Gence R, et al. Macrocyclic lactones inhibit nasopharyngeal carcinoma cells proliferation through PAK1 inhibition and reduce in vivo tumor growth[J]. Drug Des Devel Ther, 2018, 12: 2805-2814. DOI: 10.2147/DDDT.S172538.
doi: 10.2147/DDDT.S172538 |
[24] |
Taciak B, Pruszynska I, Kiraga L, et al. Wnt signaling pathway in development and cancer[J]. J Physiol Pharmacol, 2018, 69(2): 185-196. DOI: 10.26402/jpp.2018.2.07.
doi: 10.26402/jpp.2018.2.07 |
[25] |
Seth C, Mas C, Conod A, et al. Long-lasting WNT-TCF response blocking and epigenetic modifying activities of withanolide F in human cancer cells[J]. PLoS One, 2016, 11(12): e0168170. DOI: 10.1371/journal.pone.0168170.
doi: 10.1371/journal.pone.0168170 |
[26] |
Chen C, Liang H, Qin R, et al. Doramectin inhibits glioblastoma cell survival via regulation of autophagy in vitro and in vivo[J]. Int J Oncol, 2022, 60(3): 29. DOI: 10.3892/ijo.2022.5319.
doi: 10.3892/ijo.2022.5319 |
[27] |
李新, 王晓兴, 王丽薇, 等. 多拉菌素通过线粒体信号通路诱导食管癌细胞凋亡[J]. 中国医院药学杂志, 2021, 41(14): 1410-1416. DOI: 10.13286/j.1001-5213.2021.14.07.
doi: 10.13286/j.1001-5213.2021.14.07 |
[28] |
高爱丽, 梁洪生, 史国军, 等. 多拉菌素对人乳腺癌细胞阿霉素多药耐药性的体外逆转作用[J]. 中国医院药学杂志, 2014, 34(4): 266-269. DOI: 10.13286/j.cnki.chinhosppharmacyj.2014.04.05.
doi: 10.13286/j.cnki.chinhosppharmacyj.2014.04.05 |
[29] |
韩胜楠, 郭文洁. 塞拉菌素对猫耳螨病的诊治[J]. 今日畜牧兽医, 2022, 38(2): 86. DOI: 10.3969/j.issn.1673-4092.2022.02.066.
doi: 10.3969/j.issn.1673-4092.2022.02.066 |
[30] |
Ezquerra-Aznárez JM, Degiacomi G, Gašparovič H, et al. The veterinary Anti-parasitic selamectin is a novel inhibitor of the Mycobacterium tuberculosis DprE1 enzyme[J]. Int J Mol Sci, 2022, 23(2): 771. DOI: 10.3390/ijms23020771.
doi: 10.3390/ijms23020771 |
[31] |
Yun X, Rao W, Xiao C, et al. Apoptosis of leukemia K562 and Molt-4 cells induced by emamectin benzoate involving mitochondrial membrane potential loss and intracellular Ca2+ modulation[J]. Environ Toxicol Pharmacol, 2017, 52: 280-287. DOI: 10.1016/j.etap.2017.04.013.
doi: 10.1016/j.etap.2017.04.013 |
[32] |
Chen Y, Liu X, Yan D, et al. Exposure to emamectin benzoate confers cytotoxic effects on human molt-4 T-cells and possible ameliorative role of vitamin E and dithiothreitol[J]. Drug Chem Toxicol, 2022: 1-10. Inpress. DOI: 10.1080/01480545.2022.2044350.
doi: 10.1080/01480545.2022.2044350 |
[33] |
Samy ALPA, Bakthavachalam V, Vudutha M, et al. Eprinomectin, a novel semi-synthetic macrocylic lactone is cytotoxic to PC3 metastatic prostate cancer cells via inducing apoptosis[J]. Toxicol Appl Pharmacol, 2020, 401: 115071. DOI: 10.1016/j.taap.2020.115071.
doi: 10.1016/j.taap.2020.115071 |
[1] | Zhang Baihong, Yue Hongyun. Advances in anti-tumor drugs with new mechanisms of action [J]. Journal of International Oncology, 2024, 51(6): 354-358. |
[2] | Wang Shuang, Tang Yunyun, Yue Qi. New progress in antitumor research of non-psychoactive cannabidiol [J]. Journal of International Oncology, 2020, 47(10): 619-623. |
[3] | Yi Lin, Qiu Shi. Anti-tumor effect and mechanisms of shikonin on gliomas [J]. Journal of International Oncology, 2019, 46(8): 489-491. |
[4] | Liang Jing1,3, Han Sha2, Yao Jing3, Kong Qingsheng2. Effect of histone deacetylase and its inhibitor on tumor [J]. Journal of International Oncology, 2019, 46(4): 235-238. |
[5] | Xiong Bobo, Zhang Jinsong, Li Ning, Wang Haifeng, Zuo Yigang, Wang Jiansong. Molecular targeted therapy for advanced kidney cancer [J]. Journal of International Oncology, 2019, 46(12): 705-710. |
[6] | Wang Gang, Wang Huangzhen, Xue Ting. Effect of oxaliplatin induced autophagy on drug resistance of SGC7901 gastric cancer cells [J]. Journal of International Oncology, 2018, 45(8): 513-518. |
[7] | Ling Xiaofei, Xu Ke, Shao Hua, Wang Cuijuan. Anticancer mechanism and application of curcumin analog EF24 [J]. Journal of International Oncology, 2018, 45(3): 172-175. |
[8] | Liang Biyu, He Weiming, He Xiaoyi, Ding Yuanlin, Yu Haibing. Diabetes, hypoglycemic drugs and pancreatic cancer [J]. Journal of International Oncology, 2018, 45(3): 183-186. |
[9] | QIU Mei-Qing, WANG Tao, TONG Zhong-Sheng, JIA Yong-Sheng. Effects and mechanism of overexpression of Mfn2 gene on photodynamic therapy sensitivity of T47D cells in human breast cancer [J]. Journal of International Oncology, 2017, 44(8): 641-646. |
[10] | Chen Gang, Zhuang Fangcheng. High mobility group box 1 and its role in cervical cancer [J]. Journal of International Oncology, 2017, 44(3): 235-238. |
[11] | Dong Yi, Wei Yuehua, Hu Weiguo, Song Qibin. Therapy for non-small cell lung cancer patients with solitary bone metastases [J]. Journal of International Oncology, 2017, 44(1): 60-62. |
[12] | Xiong Ting, Li Liding, Yan Xin, Xie Feiyan, Liao Caiqin, Lu Kaiqiang, Liu Xiaowang, Tu Jian. The mechanism of Genistein in the genesis and development of malignant tumor [J]. Journal of International Oncology, 2016, 43(8): 609-611. |
[13] | DU Ji-Hui, ZHANG Hou-De, WEI Jing, WANG Lei, SUN Ting-Ji. Correlation of peroxisome pathway reactive oxygen species oxidative stress gene and its correlation with the antitumor sensitivity of artesunate against pancreatic cancer [J]. Journal of International Oncology, 2016, 43(7): 503-507. |
[14] | Lu Kaiqiang, Zhou Zhigang, Tian Wen, Zou Zhinan, Liao Caiqin, Xie Feiyan, Tu Jian. Mechanism of Cyclophilin A in tumor [J]. Journal of International Oncology, 2016, 43(6): 439-441. |
[15] | Zhao Jinlu, Li Guodong, Liu Ming. Mechanism of anticarcinogenic function of ellagic acid in gastrointestinal cancers [J]. Journal of International Oncology, 2016, 43(6): 472-474. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||