
Journal of International Oncology ›› 2022, Vol. 49 ›› Issue (6): 353-356.doi: 10.3760/cma.j.cn371439-20220321-00067
• Reviews • Previous Articles Next Articles
					
													Wang Liwei1, Liang Hongsheng2, Du Songlin1, Chen Zhihao1, Wang Qing1, Gao Aili1(
)
												  
						
						
						
					
				
Received:2022-03-21
															
							
																	Revised:2022-04-07
															
							
															
							
																	Online:2022-06-08
															
							
																	Published:2022-06-30
															
						Contact:
								Gao Aili   
																	E-mail:gaoaili2004@163.com
																					Supported by:Wang Liwei, Liang Hongsheng, Du Songlin, Chen Zhihao, Wang Qing, Gao Aili. Research progress of avermectins in anti-tumor[J]. Journal of International Oncology, 2022, 49(6): 353-356.
| [1] |  
											 Du Y, Shao Z, Xu Q, et al.  Azobenzene-avermectin B1a derivatives for optical modulation of insect behaviors[J]. J Agric Food Chem, 2021, 69(51): 15530-15537. DOI: 10.1021/acs.jafc.1c05036. 
																							 doi: 10.1021/acs.jafc.1c05036  | 
										
| [2] |  
											 de Melo GD, Lazarini F, Larrous F, et al.  Attenuation of clinical and immunological outcomes during SARS-CoV-2 infection by ivermectin[J]. EMBO Mol Med, 2021, 13(8): e14122. DOI: 10.15252/emmm.202114122. 
																							 doi: 10.15252/emmm.202114122  | 
										
| [3] |  
											 Popp M, Stegemann M, Metzendorf MI, et al.  Ivermectin for preventing and treating COVID-19[J]. Cochrane Database Syst Rev, 2021, 7(7): CD015017. DOI: 10.1002/14651858.CD015017.pub2. 
																							 doi: 10.1002/14651858.CD015017.pub2  | 
										
| [4] |  
											 Diao L, Tang N, Zhang C, et al.  Avermectin induced DNA damage to the apoptosis and autophagy in human lung epithelial A549 cells[J]. Ecotoxicol Environ Saf, 2021, 215: 112129. DOI: 10.1016/j.ecoenv.2021.112129. 
																							 doi: 10.1016/j.ecoenv.2021.112129  | 
										
| [5] |  
											 Liu Y, Fang S, Sun Q, et al.  Anthelmintic drug ivermectin inhibits angiogenesis, growth and survival of glioblastoma through inducing mitochondrial dysfunction and oxidative stress[J]. Biochem Biophys Res Commun, 2016, 480(3): 415-421. DOI: 10.1016/j.bbrc.2016.10.064. 
																							 doi: 10.1016/j.bbrc.2016.10.064  | 
										
| [6] |  
											 Zhang X, Qin T, Zhu Z, et al.  Ivermectin augments the in vitro and in vivo efficacy of cisplatin in epithelial ovarian cancer by suppressing Akt/mTOR signaling[J]. Am J Med Sci, 2020, 359(2): 123-129. DOI: 10.1016/j.amjms.2019.11.001. 
																							 doi: 10.1016/j.amjms.2019.11.001  | 
										
| [7] |  
											 罗丹, 罗亮, 杨志军, 等. 阿维菌素对胶质母细胞瘤U251细胞增殖、凋亡的影响及其机制探讨[J]. 山东医药, 2017, 57(27): 31-33. DOI: 10.3969/j.issn.1002-266X.2017.27.008. 
																							 doi: 10.3969/j.issn.1002-266X.2017.27.008  | 
										
| [8] | 张阳. 阿维菌素的细胞毒性及分子机理研究[D]. 上海: 华东理工大学, 2017. | 
| [9] |  
											 Zhang Y, Wu J, Xu W, et al.  Cytotoxic effects of Avermectin on human HepG2 cells in vitro bioassays[J]. Environ Pollut, 2017, 220(Pt B): 1127-1137. DOI: 10.1016/j.envpol.2016.11.022. 
																							 doi: 10.1016/j.envpol.2016.11.022  | 
										
| [10] |  
											 Zhang X, Zhang G, Zhai W, et al.  Inhibition of TMEM16A Ca2+-activated Cl- channels by avermectins is essential for their anticancer effects[J]. Pharmacol Res, 2020, 156: 104763. DOI: 10.1016/j.phrs.2020.104763. 
																							 doi: 10.1016/j.phrs.2020.104763  | 
										
| [11] |  
											 Zhu S, Zhou J, Zhou Z, et al.  Abamectin induces apoptosis and autophagy by inhibiting reactive oxygen species-mediated PI3K/AKT signaling in MGC803 cells[J]. J Biochem Mol Toxicol, 2019, 33(7): e22336. DOI: 10.1002/jbt.22336. 
																							 doi: 10.1002/jbt.22336  | 
										
| [12] |  
											 Liang Y, Dong B, Pang N, et al.  Abamectin induces cytotoxicity via the ROS, JNK, and ATM/ATR pathways[J]. Environ Sci Pollut Res Int, 2020, 27(12): 13726-13734. DOI: 10.1007/s11356-019-06869-2. 
																							 doi: 10.1007/s11356-019-06869-2  | 
										
| [13] |  
											 Dominguez-Gomez G, Chavez-Blanco A, Medina-Franco JL, et al.  Ivermectin as an inhibitor of cancer stem‑like cells[J]. Mol Med Rep, 2018, 17(2): 3397-3403. DOI: 10.3892/mmr.2017.8231. 
																							 doi: 10.3892/mmr.2017.8231 pmid: 29257278  | 
										
| [14] |  
											 Zhang P, Zhang Y, Liu K, et al.  Ivermectin induces cell cycle arrest and apoptosis of HeLa cells via mitochondrial pathway[J]. Cell Prolif, 2019, 52(2): e12543. DOI: 10.1111/cpr.12543. 
																							 doi: 10.1111/cpr.12543  | 
										
| [15] |  
											 Song D, Liang H, Qu B, et al.  Ivermectin inhibits the growth of glioma cells by inducing cell cycle arrest and apoptosis in vitro and in vivo[J]. J Cell Biochem, 2019, 120(1): 622-633. DOI: 10.1002/jcb.27420. 
																							 doi: 10.1002/jcb.27420  | 
										
| [16] |  
											 Chen L, Bi S, Wei Q, et al.  Ivermectin suppresses tumour growth and metastasis through degradation of PAK1 in oesophageal squamous cell carcinoma[J]. J Cell Mol Med, 2020, 24(9): 5387-5401. DOI: 10.1111/jcmm.15195. 
																							 doi: 10.1111/jcmm.15195  | 
										
| [17] |  
											 汤月良, 邓冠群. 伊维菌素对奥沙利铂抗结肠癌耐药细胞的增效作用及其机制[J]. 解放军医学杂志, 2021, 46(6): 563-573. DOI: 10.11855/j.issn.0577-7402.2021.06.06. 
																							 doi: 10.11855/j.issn.0577-7402.2021.06.06  | 
										
| [18] |  
											 Jiang L, Wang P, Sun YJ, et al.  Ivermectin reverses the drug resistance in cancer cells through EGFR/ERK/Akt/NF-κB pathway[J]. J Exp Clin Cancer Res, 2019, 38(1): 265. DOI: 10.1186/s13046-019-1251-7. 
																							 doi: 10.1186/s13046-019-1251-7  | 
										
| [19] |  
											 Juarez M, Schcolnik-Cabrera A, Dueñas-Gonzalez A. The multitargeted drug ivermectin: from an antiparasitic agent to a repositioned cancer drug[J]. Am J Cancer Res, 2018, 8(2): 317-331. 
																							 pmid: 29511601  | 
										
| [20] |  
											 Draganov D, Han Z, Rana A, et al.  Ivermectin converts cold tumors hot and synergizes with immune checkpoint blockade for treatment of breast cancer[J]. NPJ Breast Cancer, 2021, 7(1): 22. DOI: 10.1038/s41523-021-00229-5. 
																							 doi: 10.1038/s41523-021-00229-5 pmid: 33654071  | 
										
| [21] |  
											 Wang K, Gao W, Dou Q, et al.  Ivermectin induces PAK1-mediated cytostatic autophagy in breast cancer[J]. Autophagy, 2016, 12(12): 2498-2499. DOI: 10.1080/15548627.2016.1231494. 
																							 doi: 10.1080/15548627.2016.1231494 pmid: 27657889  | 
										
| [22] |  
											 Dou Q, Chen HN, Wang K, et al.  Ivermectin induces cytostatic autophagy by blocking the PAK1/Akt axis in breast cancer[J]. Cancer Res, 2016, 76(15): 4457-4469. DOI: 10.1158/0008-5472.CAN-15-2887. 
																							 doi: 10.1158/0008-5472.CAN-15-2887  | 
										
| [23] |  
											 Gallardo F, Mariamé B, Gence R, et al.  Macrocyclic lactones inhibit nasopharyngeal carcinoma cells proliferation through PAK1 inhibition and reduce in vivo tumor growth[J]. Drug Des Devel Ther, 2018, 12: 2805-2814. DOI: 10.2147/DDDT.S172538. 
																							 doi: 10.2147/DDDT.S172538  | 
										
| [24] |  
											 Taciak B, Pruszynska I, Kiraga L, et al.  Wnt signaling pathway in development and cancer[J]. J Physiol Pharmacol, 2018, 69(2): 185-196. DOI: 10.26402/jpp.2018.2.07. 
																							 doi: 10.26402/jpp.2018.2.07  | 
										
| [25] |  
											 Seth C, Mas C, Conod A, et al.  Long-lasting WNT-TCF response blocking and epigenetic modifying activities of withanolide F in human cancer cells[J]. PLoS One, 2016, 11(12): e0168170. DOI: 10.1371/journal.pone.0168170. 
																							 doi: 10.1371/journal.pone.0168170  | 
										
| [26] |  
											 Chen C, Liang H, Qin R, et al.  Doramectin inhibits glioblastoma cell survival via regulation of autophagy in vitro and in vivo[J]. Int J Oncol, 2022, 60(3): 29. DOI: 10.3892/ijo.2022.5319. 
																							 doi: 10.3892/ijo.2022.5319  | 
										
| [27] |  
											 李新, 王晓兴, 王丽薇, 等. 多拉菌素通过线粒体信号通路诱导食管癌细胞凋亡[J]. 中国医院药学杂志, 2021, 41(14): 1410-1416. DOI: 10.13286/j.1001-5213.2021.14.07. 
																							 doi: 10.13286/j.1001-5213.2021.14.07  | 
										
| [28] |  
											 高爱丽, 梁洪生, 史国军, 等. 多拉菌素对人乳腺癌细胞阿霉素多药耐药性的体外逆转作用[J]. 中国医院药学杂志, 2014, 34(4): 266-269. DOI: 10.13286/j.cnki.chinhosppharmacyj.2014.04.05. 
																							 doi: 10.13286/j.cnki.chinhosppharmacyj.2014.04.05  | 
										
| [29] |  
											 韩胜楠, 郭文洁. 塞拉菌素对猫耳螨病的诊治[J]. 今日畜牧兽医, 2022, 38(2): 86. DOI: 10.3969/j.issn.1673-4092.2022.02.066. 
																							 doi: 10.3969/j.issn.1673-4092.2022.02.066  | 
										
| [30] |  
											 Ezquerra-Aznárez JM, Degiacomi G, Gašparovič H, et al.  The veterinary Anti-parasitic selamectin is a novel inhibitor of the Mycobacterium tuberculosis DprE1 enzyme[J]. Int J Mol Sci, 2022, 23(2): 771. DOI: 10.3390/ijms23020771. 
																							 doi: 10.3390/ijms23020771  | 
										
| [31] |  
											 Yun X, Rao W, Xiao C, et al.  Apoptosis of leukemia K562 and Molt-4 cells induced by emamectin benzoate involving mitochondrial membrane potential loss and intracellular Ca2+ modulation[J]. Environ Toxicol Pharmacol, 2017, 52: 280-287. DOI: 10.1016/j.etap.2017.04.013. 
																							 doi: 10.1016/j.etap.2017.04.013  | 
										
| [32] |  
											 Chen Y, Liu X, Yan D, et al.  Exposure to emamectin benzoate confers cytotoxic effects on human molt-4 T-cells and possible ameliorative role of vitamin E and dithiothreitol[J]. Drug Chem Toxicol, 2022: 1-10. Inpress. DOI: 10.1080/01480545.2022.2044350. 
																							 doi: 10.1080/01480545.2022.2044350  | 
										
| [33] |  
											 Samy ALPA, Bakthavachalam V, Vudutha M, et al.  Eprinomectin, a novel semi-synthetic macrocylic lactone is cytotoxic to PC3 metastatic prostate cancer cells via inducing apoptosis[J]. Toxicol Appl Pharmacol, 2020, 401: 115071. DOI: 10.1016/j.taap.2020.115071. 
																							 doi: 10.1016/j.taap.2020.115071  | 
										
| [1] | Zhang Baihong, Yue Hongyun. Advances in anti-tumor drugs with new mechanisms of action [J]. Journal of International Oncology, 2024, 51(6): 354-358. | 
| [2] | Wang Shuang, Tang Yunyun, Yue Qi. New progress in antitumor research of non-psychoactive cannabidiol [J]. Journal of International Oncology, 2020, 47(10): 619-623. | 
| [3] | Yi Lin, Qiu Shi. Anti-tumor effect and mechanisms of shikonin on gliomas [J]. Journal of International Oncology, 2019, 46(8): 489-491. | 
| [4] | Liang Jing1,3, Han Sha2, Yao Jing3, Kong Qingsheng2. Effect of histone deacetylase and its inhibitor on tumor [J]. Journal of International Oncology, 2019, 46(4): 235-238. | 
| [5] | Xiong Bobo, Zhang Jinsong, Li Ning, Wang Haifeng, Zuo Yigang, Wang Jiansong. Molecular targeted therapy for advanced kidney cancer [J]. Journal of International Oncology, 2019, 46(12): 705-710. | 
| [6] | Wang Gang, Wang Huangzhen, Xue Ting. Effect of oxaliplatin induced autophagy on drug resistance of SGC7901 gastric cancer cells [J]. Journal of International Oncology, 2018, 45(8): 513-518. | 
| [7] | Ling Xiaofei, Xu Ke, Shao Hua, Wang Cuijuan. Anticancer mechanism and application of curcumin analog EF24 [J]. Journal of International Oncology, 2018, 45(3): 172-175. | 
| [8] | Liang Biyu, He Weiming, He Xiaoyi, Ding Yuanlin, Yu Haibing. Diabetes, hypoglycemic drugs and pancreatic cancer [J]. Journal of International Oncology, 2018, 45(3): 183-186. | 
| [9] | QIU Mei-Qing, WANG Tao, TONG Zhong-Sheng, JIA Yong-Sheng. Effects and mechanism of overexpression of Mfn2 gene on photodynamic therapy sensitivity of T47D cells in human breast cancer [J]. Journal of International Oncology, 2017, 44(8): 641-646. | 
| [10] | Chen Gang, Zhuang Fangcheng. High mobility group box 1 and its role in cervical cancer [J]. Journal of International Oncology, 2017, 44(3): 235-238. | 
| [11] | Dong Yi, Wei Yuehua, Hu Weiguo, Song Qibin. Therapy for non-small cell lung cancer patients with solitary bone metastases [J]. Journal of International Oncology, 2017, 44(1): 60-62. | 
| [12] | Xiong Ting, Li Liding, Yan Xin, Xie Feiyan, Liao Caiqin, Lu Kaiqiang, Liu Xiaowang, Tu Jian. The mechanism of Genistein in the genesis and development of malignant tumor [J]. Journal of International Oncology, 2016, 43(8): 609-611. | 
| [13] | DU Ji-Hui, ZHANG Hou-De, WEI Jing, WANG Lei, SUN Ting-Ji. Correlation of peroxisome pathway reactive oxygen species oxidative stress gene and its correlation with the antitumor sensitivity of artesunate against pancreatic cancer [J]. Journal of International Oncology, 2016, 43(7): 503-507. | 
| [14] | Lu Kaiqiang, Zhou Zhigang, Tian Wen, Zou Zhinan, Liao Caiqin, Xie Feiyan, Tu Jian. Mechanism of Cyclophilin A in tumor [J]. Journal of International Oncology, 2016, 43(6): 439-441. | 
| [15] | Zhao Jinlu, Li Guodong, Liu Ming. Mechanism of anticarcinogenic function of ellagic acid in gastrointestinal cancers [J]. Journal of International Oncology, 2016, 43(6): 472-474. | 
| Viewed | ||||||
| 
										Full text | 
									
										 | 
								|||||
| 
										Abstract | 
									
										 | 
								|||||