Journal of International Oncology ›› 2022, Vol. 49 ›› Issue (10): 630-634.doi: 10.3760/cma.j.cn371439-20220715-00126
• Reviews • Previous Articles Next Articles
Received:
2022-07-15
Revised:
2022-08-23
Online:
2022-10-08
Published:
2022-12-01
Contact:
Luo Changjiang
E-mail:157264922@qq.com
Supported by:
Yang Chi, Luo Changjiang. Research progress on the background of inflammation, immunity and cholesterol metabolism in colorectal cancer[J]. Journal of International Oncology, 2022, 49(10): 630-634.
[1] |
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
doi: 10.3322/caac.21660 |
[2] |
de Martel C, Georges D, Bray F, et al. Global burden of cancer attributable to infections in 2018: a worldwide incidence analysis[J]. Lancet Glob Health, 2020, 8(2): e180-e190. DOI: 10.1016/S2214-109X(19)30488-7.
doi: 10.1016/S2214-109X(19)30488-7 pmid: 31862245 |
[3] |
Zhao H, Wu L, Yan G, et al. Inflammation and tumor progression: signaling pathways and targeted intervention[J]. Signal Transduct Target Ther, 2021, 6(1): 263. DOI: 10.1038/s41392-021-00658-5.
doi: 10.1038/s41392-021-00658-5 |
[4] |
Nadeem MS, Kumar V, Al-Abbasi FA, et al. Risk of colorectal cancer in inflammatory bowel diseases[J]. Semin Cancer Biol, 2020, 64: 51-60. DOI: 10.1016/j.semcancer.2019.05.001.
doi: S1044-579X(19)30016-1 pmid: 31112753 |
[5] |
Kosinsky RL, Chua RL, Qui M, et al. Loss of RNF40 decreases NF-κB activity in colorectal cancer cells and reduces colitis burden in mice[J]. J Crohns Colitis, 2019, 13(3): 362-373. DOI: 10.1093/ecco-jcc/jjy165.
doi: 10.1093/ecco-jcc/jjy165 pmid: 30321325 |
[6] |
Zhu G, Cheng Z, Huang Y, et al. MyD88 mediates colorectal cancer cell proliferation, migration and invasion via NF‑κB/AP‑1 signa‑ ling pathway[J]. Int J Mol Med, 2020, 45(1): 131-140. DOI: 10. 3892/ijmm.2019.4390.
doi: 10. 3892/ijmm.2019.4390 |
[7] |
Wang R, Ma Y, Zhan S, et al. B7-H3 promotes colorectal cancer angiogenesis through activating the NF-κ B pathway to induce VEGFA expression[J]. Cell Death Dis, 2020, 11(1): 55. DOI: 10.1038/s41419-020-2252-3.
doi: 10.1038/s41419-020-2252-3 |
[8] |
Liu L, Zhai Z, Wang D, et al. The association between IL-1 family gene polymorphisms and colorectal cancer: a meta-analysis[J]. Gene, 2021, 769: 145187. DOI: 10.1016/j.gene.2020.145187.
doi: 10.1016/j.gene.2020.145187 |
[9] |
Cheng KJ, Mejia Mohammed EH, Khong TL, et al. IL-1α and colorectal cancer pathogenesis: enthralling candidate for anti-cancer therapy[J]. Crit Rev Oncol Hematol, 2021, 163: 103398. DOI: 10.1016/j.critrevonc.2021.103398.
doi: 10.1016/j.critrevonc.2021.103398 |
[10] |
Heichler C, Scheibe K, Schmied A, et al. STAT3 activation through IL-6/IL-11 in cancer-associated fibroblasts promotes colorectal tumour development and correlates with poor prognosis[J]. Gut, 2020, 69(7): 1269-1282. DOI: 10.1136/gutjnl-2019-319200.
doi: 10.1136/gutjnl-2019-319200 pmid: 31685519 |
[11] |
Xu K, Zhan Y, Yuan Z, et al. Hypoxia induces drug resistance in colorectal cancer through the HIF-1α/miR-338-5p/IL-6 feedback loop[J]. Mol Ther, 2019, 27(10): 1810-1824. DOI: 10.1016/j.ymthe.2019.05.017.
doi: S1525-0016(19)30264-3 pmid: 31208913 |
[12] |
Perez LG, Kempski J, McGee HM, et al. TGF-β signaling in Th17 cells promotes IL-22 production and colitis-associated colon cancer[J]. Nat Commun, 2020, 11(1): 2608. DOI: 10.1038/s41467-020-16363-w.
doi: 10.1038/s41467-020-16363-w pmid: 32451418 |
[13] |
Sun P, Quan JC, Wang S, et al. lncRNA-PACER upregulates COX-2 and PGE2 through the NF-κB pathway to promote the proli-feration and invasion of colorectal-cancer cells[J]. Gastroenterol Rep (Oxf), 2021, 9(3): 257-268. DOI: 10.1093/gastro/goaa060.
doi: 10.1093/gastro/goaa060 |
[14] |
Chang J, Tang N, Fang Q, et al. Inhibition of COX-2 and 5-LOX regulates the progression of colorectal cancer by promoting PTEN and suppressing PI3K/AKT pathway[J]. Biochem Biophys Res Commun, 2019, 517(1): 1-7. DOI: 10.1016/j.bbrc.2018.01.061.
doi: 10.1016/j.bbrc.2018.01.061 |
[15] |
Zhang Z, Ghosh A, Connolly PJ, et al. Gut-restricted selective cyclooxygenase-2 (COX-2) inhibitors for chemoprevention of colorectal cancer[J]. J Med Chem, 2021, 64(15): 11570-11596. DOI: 10.1021/acs.jmedchem.1c00890.
doi: 10.1021/acs.jmedchem.1c00890 pmid: 34279934 |
[16] |
Biller LH, Schrag D. Diagnosis and treatment of metastatic colorectal cancer: a review[J]. JAMA, 2021, 325(7): 669-685. DOI: 10.1001/jama.2021.0106.
doi: 10.1001/jama.2021.0106 pmid: 33591350 |
[17] |
胡诗琪, 许隽颖, 孙清, 等. 免疫检查点抑制剂治疗晚期结直肠癌的疗效观察[J]. 现代肿瘤医学, 2022, 30(17): 3143-3146. DOI: 10.3969/j.issn.1672-4992.2022.17.015.
doi: 10.3969/j.issn.1672-4992.2022.17.015 |
[18] |
Formica V, Sera F, Cremolini C, et al. KRAS and BRAF mutations in stage Ⅱ and Ⅲ colon cancer: a systematic review and meta-analysis[J]. J Natl Cancer Inst, 2022, 114(4): 517-527. DOI: 10.1093/jnci/djab190.
doi: 10.1093/jnci/djab190 |
[19] |
Taieb J, Le Malicot K, Shi Q, et al. Prognostic value of BRAF and KRAS mutations in MSI and MSS stage Ⅲ colon cancer[J]. J Natl Cancer Inst, 2016, 109(5): djw272. DOI: 10.1093/jnci/djw272.
doi: 10.1093/jnci/djw272 |
[20] |
Toor SM, Murshed K, Al-Dhaheri M, et al. Immune checkpoints in circulating and tumor-infiltrating CD4+ T cell subsets in colorectal cancer patients[J]. Front Immunol, 2019, 10: 2936. DOI: 10.3389/fimmu.2019.02936.
doi: 10.3389/fimmu.2019.02936 |
[21] |
Rahma OE, Hodi FS. The intersection between tumor angiogenesis and immune suppression[J]. Clin Cancer Res, 2019, 25(18): 5449-5457. DOI: 10.1158/1078-0432.CCR-18-1543.
doi: 10.1158/1078-0432.CCR-18-1543 pmid: 30944124 |
[22] |
Ning T, Li J, He Y, et al. Exosomal miR-208b related with oxaliplatin resistance promotes Treg expansion in colorectal cancer[J]. Mol Ther, 2021, 29(9): 2723-2736. DOI: 10.1016/j.ymthe.2021.04.028.
doi: 10.1016/j.ymthe.2021.04.028 pmid: 33905821 |
[23] |
Gao Y, Nan X, Shi X, et al. SREBP1 promotes the invasion of colorectal cancer accompanied upregulation of MMP7 expression and NF-κB pathway activation[J]. BMC Cancer, 2019, 19(1): 685. DOI: 10.1186/s12885-019-5904-x.
doi: 10.1186/s12885-019-5904-x pmid: 31299935 |
[24] |
Jin Y, Chen Z, Dong J, et al. SREBP1/FASN/cholesterol axis facilitates radioresistance in colorectal cancer[J]. FEBS Open Bio, 2021, 11(5): 1343-1352.DOI: 10.1002/2211-5463.13137.
doi: 10.1002/2211-5463.13137 pmid: 33665967 |
[25] |
Gao S, Soares F, Wang S, et al. CRISPR screens identify cholesterol biosynthesis as a therapeutic target on stemness and drug resistance of colon cancer[J]. Oncogene, 2021, 40(48): 6601-6613. DOI: 10.1038/s41388-021-01882-7.
doi: 10.1038/s41388-021-01882-7 pmid: 34621019 |
[26] |
He L, Li H, Pan C, et al. Squalene epoxidase promotes colorectal cancer cell proliferation through accumulating calcitriol and activa-ting CYP24A1-mediated MAPK signaling[J]. Cancer Commun (Lond), 2021, 41(8): 726-746. DOI: 10.1002/cac2.12187.
doi: 10.1002/cac2.12187 |
[27] |
Jun SY, Brown AJ, Chua NK, et al. Reduction of squalene epoxidase by cholesterol accumulation accelerates colorectal cancer progression and metastasis[J]. Gastroenterology, 2021, 160(4): 1194-1207.e28. DOI: 10.1053/j.gastro.2020.09.009.
doi: 10.1053/j.gastro.2020.09.009 pmid: 32946903 |
[28] |
Wang C, Li P, Xuan J, et al. Cholesterol enhances colorectal cancer progression via ROS elevation and MAPK signaling pathway activation[J]. Cell Physiol Biochem, 2017, 42(2): 729-742. DOI: 10.1159/000477890.
doi: 10.1159/000477890 pmid: 28618417 |
[29] |
Liang X, Cao Y, Xiang S, et al. LXRα-mediated downregulation of EGFR suppress colorectal cancer cell proliferation[J]. J Cell Biochem, 2019, 120(10): 17391-17404. DOI: 10.1002/jcb.29003.
doi: 10.1002/jcb.29003 pmid: 31104333 |
[30] |
Wang D, Yang L, Yu W, et al. Colorectal cancer cell-derived CCL20 recruits regulatory T cells to promote chemoresistance via FOXO1/CEBPB/NF-κB signaling[J]. J Immunother Cancer, 2019, 7(1): 215. DOI: 10.1186/s40425-019-0701-2.
doi: 10.1186/s40425-019-0701-2 pmid: 31395078 |
[31] |
Liu C, Liu R, Wang B, et al. Blocking IL-17A enhances tumor response to anti-PD-1 immunotherapy in microsatellite stable colorectal cancer[J]. J Immunother Cancer, 2021, 9(1): e001895. DOI: 10.1136/jitc-2020-001895.
doi: 10.1136/jitc-2020-001895 |
[32] |
Pastille E, Wasmer MH, Adamczyk A, et al. The IL-33/ST2 pathway shapes the regulatory T cell phenotype to promote intestinal cancer[J]. Mucosal Immunol, 2019, 12(4): 990-1003. DOI: 10.1038/s41385-019-0176-y.
doi: 10.1038/s41385-019-0176-y pmid: 31165767 |
[33] |
Sottero B, Rossin D, Poli G, et al. Lipid oxidation products in the pathogenesis of inflammation-related gut diseases[J]. Curr Med Chem, 2018, 25(11): 1311-1326. DOI: 10.2174/0929867324666170619104105.
doi: 10.2174/0929867324666170619104105 pmid: 28625152 |
[34] |
MA X, BI E, LU Y, et al. Cholesterol induces CD8+ T cell exhaustion in the tumor microenvironment[J]. Cell Metab, 2019, 30(1): 143-156.e5. DOI: 10.1016/j.cmet.2019.04.002.
doi: 10.1016/j.cmet.2019.04.002 |
[35] |
Liu C, Yao Z, Wang J, et al. Macrophage-derived CCL5 facilitates immune escape of colorectal cancer cells via the p65/STAT3-CSN5-PD-L1 pathway[J]. Cell Death Differ, 2020, 27(6): 1765-1781. DOI: 10.1038/s41418-019-0460-0.
doi: 10.1038/s41418-019-0460-0 pmid: 31802034 |
[36] |
Buhrmann C, Kunnumakkara AB, Popper B, et al. Calebin a potentiates the effect of 5-FU and TNF-β (lymphotoxin α) against human colorectal cancer cells: potential role of NF-κB[J]. Int J Mol Sci, 2020, 21(7): 2393. DOI: 10.3390/ijms21072393.
doi: 10.3390/ijms21072393 |
[37] |
Huang Y, Liu Z, Li L, et al. Sesamin inhibits hypoxia-stimulated angiogenesis via the NF-κB p65/HIF-1α/VEGFA signaling pathway in human colorectal cancer[J]. Food Funct, 2022, 13(17): 8989-8997. DOI: 10.1039/d2fo00345g.
doi: 10.1039/d2fo00345g |
[38] |
Yilmaz Ç, Köksoy S, Çeker T, et al. Diclofenac down-regulates COX-2 induced expression of CD44 and ICAM-1 in human HT29 colorectal cancer cells[J]. Naunyn Schmiedebergs Arch Pharmacol, 2021, 394(11): 2259-2272. DOI: 10.1007/s00210-021-02139-6.
doi: 10.1007/s00210-021-02139-6 |
[39] |
André T, Shiu KK, Kim TW, et al. Pembrolizumab in microsatellite-instability-high advanced colorectal cancer[J]. N Engl J Med, 2020, 383(23): 2207-2218. DOI: 10.1056/NEJMoa2017699.
doi: 10.1056/NEJMoa2017699 |
[40] |
林榕生, 吴楚海, 郭颖梅, 等. 特瑞普利单抗联合贝伐珠单抗二线以上治疗MSI-H型转移性结直肠癌的疗效及安全性[J]. 国际肿瘤学杂志, 2022, 49(2): 100-105. DOI: 10.3760/cma.j.cn371439-20210409-00016.
doi: 10.3760/cma.j.cn371439-20210409-00016 |
[41] |
Wang Y, Wei B, Gao J, et al. Combination of fruquintinib and anti-PD-1 for the treatment of colorectal cancer[J]. J Immunol, 2020, 205(10): 2905-2915. DOI: 10.4049/jimmunol.2000463.
doi: 10.4049/jimmunol.2000463 pmid: 33028620 |
[42] |
Voorneveld PW, Reimers MS, Bastiaannet E, et al. Statin use after diagnosis of colon cancer and patient survival[J]. Gastroenterology, 2017, 153(2): 470-479.e4. DOI: 10.1053/j.gastro.2017.05.011.
doi: S0016-5085(17)35597-X pmid: 28512021 |
[43] |
Fiore D, Piscopo C, Proto MC, et al. N6-isopentenyladenosine inhibits colorectal cancer and improves sensitivity to 5-fluorouracil-targeting FBXW7 tumor suppressor[J]. Cancers (Basel), 2019, 11(10): 1456. DOI: 10.3390/cancers11101456.
doi: 10.3390/cancers11101456 |
[1] | Qian Xiaotao, Shi Ziyi, Hu Ge, Wu Xiaowei. Efficacy of consolidation chemotherapy after radical radiotherapy and chemotherapy for stage Ⅲ-ⅣA esophageal squamous cell carcinoma: a real-world clinical study [J]. Journal of International Oncology, 2024, 51(6): 326-331. |
[2] | Yang Mi, Bie Jun, Zhang Jiayong, Deng Jiaxiu, Tang Zuge, Lu Jun. Analysis of the efficacy and prognosis of neoadjuvant therapy for locally advanced resectable esophageal cancer [J]. Journal of International Oncology, 2024, 51(6): 332-337. |
[3] | Zhang Baihong, Yue Hongyun. Advances in anti-tumor drugs with new mechanisms of action [J]. Journal of International Oncology, 2024, 51(6): 354-358. |
[4] | Xu Fenglin, Wu Gang. Research progress of EBV in tumor immune microenvironment and immunotherapy of nasopharyngeal carcinoma [J]. Journal of International Oncology, 2024, 51(6): 359-363. |
[5] | Wang Ying, Liu Nan, Guo Bing. Advances of antibody-drug conjugate in the therapy of metastatic breast cancer [J]. Journal of International Oncology, 2024, 51(6): 364-369. |
[6] | Zhang Rui, Chu Yanliu. Research progress of colorectal cancer risk assessment models based on FIT and gut microbiota [J]. Journal of International Oncology, 2024, 51(6): 370-375. |
[7] | Gao Fan, Wang Ping, Du Chao, Chu Yanliu. Research progress on intestinal flora and non-surgical treatment of the colorectal cancer [J]. Journal of International Oncology, 2024, 51(6): 376-381. |
[8] | Fan Zhipeng, Yu Jing, Hu Jing, Liao Zhengkai, Xu Yu, Ouyang Wen, Xie Conghua. Predictive value of changes in inflammatory markers for prognosis in patients with advanced non-small cell lung cancer treated with the first-line immunotherapy plus chemotherapy [J]. Journal of International Oncology, 2024, 51(5): 257-266. |
[9] | Wang Junyi, Hong Kaibin, Ji Rongjia, Chen Dachao. Effect of cancer nodules on liver metastases after radical resection of colorectal cancer [J]. Journal of International Oncology, 2024, 51(5): 280-285. |
[10] | Wang Peixin, Zhao Jun, Xu Shihong, Jiang Zhaoyang, Wang Xiaoqiang, Yang Hongjuan. Progress of ferroptosis-related mechanisms in osteosarcoma [J]. Journal of International Oncology, 2024, 51(5): 308-311. |
[11] | Yang Hao, Shi Guidong, Zhang Chengcheng, Zhang Yue, Zhang Liwen, Fu Maoyong. Comparison of efficacy and safety between sintilimab and tislelizumab in neoadjuvant therapy for advanced esophageal squamous cell carcinoma [J]. Journal of International Oncology, 2024, 51(4): 210-216. |
[12] | Sa Qiang, Xu Hangcheng, Wang Jiayu. Advances in immunotherapy for breast cancer [J]. Journal of International Oncology, 2024, 51(4): 227-234. |
[13] | Yang Zhi, Lu Yiqiao, Gu Huayan, Ding Jialing, Guo Guilong. Research progress of tumor microenvironment mediated drug resistance in targeted therapy of breast cancer [J]. Journal of International Oncology, 2024, 51(4): 235-238. |
[14] | Sun Weiwei, Yao Xuemin, Wang Pengjian, Wang Jing, Jia Jinghao. Exploration of prognostic factors and nomogram construction for advanced non-small cell lung cancer treated with immunotherapy based on hematologic indexes [J]. Journal of International Oncology, 2024, 51(3): 143-150. |
[15] | Qian Xiaotao, Shi Ziyi, Hu Ge. A real-world clinical study of immunocheckpoint inhibitor maintenance therapy after radical radiotherapy and chemotherapy in stage Ⅲ-ⅣA esophageal squamous cell carcinoma [J]. Journal of International Oncology, 2024, 51(3): 151-156. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||