
Journal of International Oncology ›› 2022, Vol. 49 ›› Issue (10): 630-634.doi: 10.3760/cma.j.cn371439-20220715-00126
• Reviews • Previous Articles Next Articles
Received:2022-07-15
															
							
																	Revised:2022-08-23
															
							
															
							
																	Online:2022-10-08
															
							
																	Published:2022-12-01
															
						Contact:
								Luo Changjiang   
																	E-mail:157264922@qq.com
																					Supported by:Yang Chi, Luo Changjiang. Research progress on the background of inflammation, immunity and cholesterol metabolism in colorectal cancer[J]. Journal of International Oncology, 2022, 49(10): 630-634.
| [1] |  
											 Sung H, Ferlay J, Siegel RL, et al.  Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660. 
																							 doi: 10.3322/caac.21660  | 
										
| [2] |  
											 de Martel C, Georges D, Bray F, et al.  Global burden of cancer attributable to infections in 2018: a worldwide incidence analysis[J]. Lancet Glob Health, 2020, 8(2): e180-e190. DOI: 10.1016/S2214-109X(19)30488-7. 
																							 doi: 10.1016/S2214-109X(19)30488-7 pmid: 31862245  | 
										
| [3] |  
											 Zhao H, Wu L, Yan G, et al.  Inflammation and tumor progression: signaling pathways and targeted intervention[J]. Signal Transduct Target Ther, 2021, 6(1): 263. DOI: 10.1038/s41392-021-00658-5. 
																							 doi: 10.1038/s41392-021-00658-5  | 
										
| [4] |  
											 Nadeem MS, Kumar V, Al-Abbasi FA, et al.  Risk of colorectal cancer in inflammatory bowel diseases[J]. Semin Cancer Biol, 2020, 64: 51-60. DOI: 10.1016/j.semcancer.2019.05.001. 
																							 doi: S1044-579X(19)30016-1 pmid: 31112753  | 
										
| [5] |  
											 Kosinsky RL, Chua RL, Qui M, et al.  Loss of RNF40 decreases NF-κB activity in colorectal cancer cells and reduces colitis burden in mice[J]. J Crohns Colitis, 2019, 13(3): 362-373. DOI: 10.1093/ecco-jcc/jjy165. 
																							 doi: 10.1093/ecco-jcc/jjy165 pmid: 30321325  | 
										
| [6] |  
											 Zhu G, Cheng Z, Huang Y, et al.  MyD88 mediates colorectal cancer cell proliferation, migration and invasion via NF‑κB/AP‑1 signa‑ ling pathway[J]. Int J Mol Med, 2020, 45(1): 131-140. DOI: 10. 3892/ijmm.2019.4390. 
																							 doi: 10. 3892/ijmm.2019.4390  | 
										
| [7] |  
											 Wang R, Ma Y, Zhan S, et al.  B7-H3 promotes colorectal cancer angiogenesis through activating the NF-κ B pathway to induce VEGFA expression[J]. Cell Death Dis, 2020, 11(1): 55. DOI: 10.1038/s41419-020-2252-3. 
																							 doi: 10.1038/s41419-020-2252-3  | 
										
| [8] |  
											 Liu L, Zhai Z, Wang D, et al.  The association between IL-1 family gene polymorphisms and colorectal cancer: a meta-analysis[J]. Gene, 2021, 769: 145187. DOI: 10.1016/j.gene.2020.145187. 
																							 doi: 10.1016/j.gene.2020.145187  | 
										
| [9] |  
											 Cheng KJ, Mejia Mohammed EH, Khong TL, et al.  IL-1α and colorectal cancer pathogenesis: enthralling candidate for anti-cancer therapy[J]. Crit Rev Oncol Hematol, 2021, 163: 103398. DOI: 10.1016/j.critrevonc.2021.103398. 
																							 doi: 10.1016/j.critrevonc.2021.103398  | 
										
| [10] |  
											 Heichler C, Scheibe K, Schmied A, et al.  STAT3 activation through IL-6/IL-11 in cancer-associated fibroblasts promotes colorectal tumour development and correlates with poor prognosis[J]. Gut, 2020, 69(7): 1269-1282. DOI: 10.1136/gutjnl-2019-319200. 
																							 doi: 10.1136/gutjnl-2019-319200 pmid: 31685519  | 
										
| [11] |  
											 Xu K, Zhan Y, Yuan Z, et al.  Hypoxia induces drug resistance in colorectal cancer through the HIF-1α/miR-338-5p/IL-6 feedback loop[J]. Mol Ther, 2019, 27(10): 1810-1824. DOI: 10.1016/j.ymthe.2019.05.017. 
																							 doi: S1525-0016(19)30264-3 pmid: 31208913  | 
										
| [12] |  
											 Perez LG, Kempski J, McGee HM, et al.  TGF-β signaling in Th17 cells promotes IL-22 production and colitis-associated colon cancer[J]. Nat Commun, 2020, 11(1): 2608. DOI: 10.1038/s41467-020-16363-w. 
																							 doi: 10.1038/s41467-020-16363-w pmid: 32451418  | 
										
| [13] |  
											 Sun P, Quan JC, Wang S, et al.  lncRNA-PACER upregulates COX-2 and PGE2 through the NF-κB pathway to promote the proli-feration and invasion of colorectal-cancer cells[J]. Gastroenterol Rep (Oxf), 2021, 9(3): 257-268. DOI: 10.1093/gastro/goaa060. 
																							 doi: 10.1093/gastro/goaa060  | 
										
| [14] |  
											 Chang J, Tang N, Fang Q, et al.  Inhibition of COX-2 and 5-LOX regulates the progression of colorectal cancer by promoting PTEN and suppressing PI3K/AKT pathway[J]. Biochem Biophys Res Commun, 2019, 517(1): 1-7. DOI: 10.1016/j.bbrc.2018.01.061. 
																							 doi: 10.1016/j.bbrc.2018.01.061  | 
										
| [15] |  
											 Zhang Z, Ghosh A, Connolly PJ, et al.  Gut-restricted selective cyclooxygenase-2 (COX-2) inhibitors for chemoprevention of colorectal cancer[J]. J Med Chem, 2021, 64(15): 11570-11596. DOI: 10.1021/acs.jmedchem.1c00890. 
																							 doi: 10.1021/acs.jmedchem.1c00890 pmid: 34279934  | 
										
| [16] |  
											 Biller LH, Schrag D. Diagnosis and treatment of metastatic colorectal cancer: a review[J]. JAMA, 2021, 325(7): 669-685. DOI: 10.1001/jama.2021.0106. 
																							 doi: 10.1001/jama.2021.0106 pmid: 33591350  | 
										
| [17] |  
											 胡诗琪, 许隽颖, 孙清, 等. 免疫检查点抑制剂治疗晚期结直肠癌的疗效观察[J]. 现代肿瘤医学, 2022, 30(17): 3143-3146. DOI: 10.3969/j.issn.1672-4992.2022.17.015. 
																							 doi: 10.3969/j.issn.1672-4992.2022.17.015  | 
										
| [18] |  
											 Formica V, Sera F, Cremolini C, et al.  KRAS and BRAF mutations in stage Ⅱ and Ⅲ colon cancer: a systematic review and meta-analysis[J]. J Natl Cancer Inst, 2022, 114(4): 517-527. DOI: 10.1093/jnci/djab190. 
																							 doi: 10.1093/jnci/djab190  | 
										
| [19] |  
											 Taieb J, Le Malicot K, Shi Q, et al.  Prognostic value of BRAF and KRAS mutations in MSI and MSS stage Ⅲ colon cancer[J]. J Natl Cancer Inst, 2016, 109(5): djw272. DOI: 10.1093/jnci/djw272. 
																							 doi: 10.1093/jnci/djw272  | 
										
| [20] |  
											 Toor SM, Murshed K, Al-Dhaheri M, et al.  Immune checkpoints in circulating and tumor-infiltrating CD4+ T cell subsets in colorectal cancer patients[J]. Front Immunol, 2019, 10: 2936. DOI: 10.3389/fimmu.2019.02936. 
																							 doi: 10.3389/fimmu.2019.02936  | 
										
| [21] |  
											 Rahma OE, Hodi FS. The intersection between tumor angiogenesis and immune suppression[J]. Clin Cancer Res, 2019, 25(18): 5449-5457. DOI: 10.1158/1078-0432.CCR-18-1543. 
																							 doi: 10.1158/1078-0432.CCR-18-1543 pmid: 30944124  | 
										
| [22] |  
											 Ning T, Li J, He Y, et al.  Exosomal miR-208b related with oxaliplatin resistance promotes Treg expansion in colorectal cancer[J]. Mol Ther, 2021, 29(9): 2723-2736. DOI: 10.1016/j.ymthe.2021.04.028. 
																							 doi: 10.1016/j.ymthe.2021.04.028 pmid: 33905821  | 
										
| [23] |  
											 Gao Y, Nan X, Shi X, et al.  SREBP1 promotes the invasion of colorectal cancer accompanied upregulation of MMP7 expression and NF-κB pathway activation[J]. BMC Cancer, 2019, 19(1): 685. DOI: 10.1186/s12885-019-5904-x. 
																							 doi: 10.1186/s12885-019-5904-x pmid: 31299935  | 
										
| [24] |  
											 Jin Y, Chen Z, Dong J, et al.  SREBP1/FASN/cholesterol axis facilitates radioresistance in colorectal cancer[J]. FEBS Open Bio, 2021, 11(5): 1343-1352.DOI: 10.1002/2211-5463.13137. 
																							 doi: 10.1002/2211-5463.13137 pmid: 33665967  | 
										
| [25] |  
											 Gao S, Soares F, Wang S, et al.  CRISPR screens identify cholesterol biosynthesis as a therapeutic target on stemness and drug resistance of colon cancer[J]. Oncogene, 2021, 40(48): 6601-6613. DOI: 10.1038/s41388-021-01882-7. 
																							 doi: 10.1038/s41388-021-01882-7 pmid: 34621019  | 
										
| [26] |  
											 He L, Li H, Pan C, et al.  Squalene epoxidase promotes colorectal cancer cell proliferation through accumulating calcitriol and activa-ting CYP24A1-mediated MAPK signaling[J]. Cancer Commun (Lond), 2021, 41(8): 726-746. DOI: 10.1002/cac2.12187. 
																							 doi: 10.1002/cac2.12187  | 
										
| [27] |  
											 Jun SY, Brown AJ, Chua NK, et al.  Reduction of squalene epoxidase by cholesterol accumulation accelerates colorectal cancer progression and metastasis[J]. Gastroenterology, 2021, 160(4): 1194-1207.e28. DOI: 10.1053/j.gastro.2020.09.009. 
																							 doi: 10.1053/j.gastro.2020.09.009 pmid: 32946903  | 
										
| [28] |  
											 Wang C, Li P, Xuan J, et al.  Cholesterol enhances colorectal cancer progression via ROS elevation and MAPK signaling pathway activation[J]. Cell Physiol Biochem, 2017, 42(2): 729-742. DOI: 10.1159/000477890. 
																							 doi: 10.1159/000477890 pmid: 28618417  | 
										
| [29] |  
											 Liang X, Cao Y, Xiang S, et al.  LXRα-mediated downregulation of EGFR suppress colorectal cancer cell proliferation[J]. J Cell Biochem, 2019, 120(10): 17391-17404. DOI: 10.1002/jcb.29003. 
																							 doi: 10.1002/jcb.29003 pmid: 31104333  | 
										
| [30] |  
											 Wang D, Yang L, Yu W, et al.  Colorectal cancer cell-derived CCL20 recruits regulatory T cells to promote chemoresistance via FOXO1/CEBPB/NF-κB signaling[J]. J Immunother Cancer, 2019, 7(1): 215. DOI: 10.1186/s40425-019-0701-2. 
																							 doi: 10.1186/s40425-019-0701-2 pmid: 31395078  | 
										
| [31] |  
											 Liu C, Liu R, Wang B, et al.  Blocking IL-17A enhances tumor response to anti-PD-1 immunotherapy in microsatellite stable colorectal cancer[J]. J Immunother Cancer, 2021, 9(1): e001895. DOI: 10.1136/jitc-2020-001895. 
																							 doi: 10.1136/jitc-2020-001895  | 
										
| [32] |  
											 Pastille E, Wasmer MH, Adamczyk A, et al.  The IL-33/ST2 pathway shapes the regulatory T cell phenotype to promote intestinal cancer[J]. Mucosal Immunol, 2019, 12(4): 990-1003. DOI: 10.1038/s41385-019-0176-y. 
																							 doi: 10.1038/s41385-019-0176-y pmid: 31165767  | 
										
| [33] |  
											 Sottero B, Rossin D, Poli G, et al.  Lipid oxidation products in the pathogenesis of inflammation-related gut diseases[J]. Curr Med Chem, 2018, 25(11): 1311-1326. DOI: 10.2174/0929867324666170619104105. 
																							 doi: 10.2174/0929867324666170619104105 pmid: 28625152  | 
										
| [34] |  
											 MA X, BI E, LU Y, et al.  Cholesterol induces CD8+ T cell exhaustion in the tumor microenvironment[J]. Cell Metab, 2019, 30(1): 143-156.e5. DOI: 10.1016/j.cmet.2019.04.002. 
																							 doi: 10.1016/j.cmet.2019.04.002  | 
										
| [35] |  
											 Liu C, Yao Z, Wang J, et al.  Macrophage-derived CCL5 facilitates immune escape of colorectal cancer cells via the p65/STAT3-CSN5-PD-L1 pathway[J]. Cell Death Differ, 2020, 27(6): 1765-1781. DOI: 10.1038/s41418-019-0460-0. 
																							 doi: 10.1038/s41418-019-0460-0 pmid: 31802034  | 
										
| [36] |  
											 Buhrmann C, Kunnumakkara AB, Popper B, et al.  Calebin a potentiates the effect of 5-FU and TNF-β (lymphotoxin α) against human colorectal cancer cells: potential role of NF-κB[J]. Int J Mol Sci, 2020, 21(7): 2393. DOI: 10.3390/ijms21072393. 
																							 doi: 10.3390/ijms21072393  | 
										
| [37] |  
											 Huang Y, Liu Z, Li L, et al.  Sesamin inhibits hypoxia-stimulated angiogenesis via the NF-κB p65/HIF-1α/VEGFA signaling pathway in human colorectal cancer[J]. Food Funct, 2022, 13(17): 8989-8997. DOI: 10.1039/d2fo00345g. 
																							 doi: 10.1039/d2fo00345g  | 
										
| [38] |  
											 Yilmaz Ç, Köksoy S, Çeker T, et al.  Diclofenac down-regulates COX-2 induced expression of CD44 and ICAM-1 in human HT29 colorectal cancer cells[J]. Naunyn Schmiedebergs Arch Pharmacol, 2021, 394(11): 2259-2272. DOI: 10.1007/s00210-021-02139-6. 
																							 doi: 10.1007/s00210-021-02139-6  | 
										
| [39] |  
											 André T, Shiu KK, Kim TW, et al.  Pembrolizumab in microsatellite-instability-high advanced colorectal cancer[J]. N Engl J Med, 2020, 383(23): 2207-2218. DOI: 10.1056/NEJMoa2017699. 
																							 doi: 10.1056/NEJMoa2017699  | 
										
| [40] |  
											 林榕生, 吴楚海, 郭颖梅, 等. 特瑞普利单抗联合贝伐珠单抗二线以上治疗MSI-H型转移性结直肠癌的疗效及安全性[J]. 国际肿瘤学杂志, 2022, 49(2): 100-105. DOI: 10.3760/cma.j.cn371439-20210409-00016. 
																							 doi: 10.3760/cma.j.cn371439-20210409-00016  | 
										
| [41] |  
											 Wang Y, Wei B, Gao J, et al.  Combination of fruquintinib and anti-PD-1 for the treatment of colorectal cancer[J]. J Immunol, 2020, 205(10): 2905-2915. DOI: 10.4049/jimmunol.2000463. 
																							 doi: 10.4049/jimmunol.2000463 pmid: 33028620  | 
										
| [42] |  
											 Voorneveld PW, Reimers MS, Bastiaannet E, et al.  Statin use after diagnosis of colon cancer and patient survival[J]. Gastroenterology, 2017, 153(2): 470-479.e4. DOI: 10.1053/j.gastro.2017.05.011. 
																							 doi: S0016-5085(17)35597-X pmid: 28512021  | 
										
| [43] |  
											 Fiore D, Piscopo C, Proto MC, et al.  N6-isopentenyladenosine inhibits colorectal cancer and improves sensitivity to 5-fluorouracil-targeting FBXW7 tumor suppressor[J]. Cancers (Basel), 2019, 11(10): 1456. DOI: 10.3390/cancers11101456. 
																							 doi: 10.3390/cancers11101456  | 
										
| [1] | Qian Xiaotao, Shi Ziyi, Hu Ge, Wu Xiaowei. Efficacy of consolidation chemotherapy after radical radiotherapy and chemotherapy for stage Ⅲ-ⅣA esophageal squamous cell carcinoma: a real-world clinical study [J]. Journal of International Oncology, 2024, 51(6): 326-331. | 
| [2] | Yang Mi, Bie Jun, Zhang Jiayong, Deng Jiaxiu, Tang Zuge, Lu Jun. Analysis of the efficacy and prognosis of neoadjuvant therapy for locally advanced resectable esophageal cancer [J]. Journal of International Oncology, 2024, 51(6): 332-337. | 
| [3] | Zhang Baihong, Yue Hongyun. Advances in anti-tumor drugs with new mechanisms of action [J]. Journal of International Oncology, 2024, 51(6): 354-358. | 
| [4] | Xu Fenglin, Wu Gang. Research progress of EBV in tumor immune microenvironment and immunotherapy of nasopharyngeal carcinoma [J]. Journal of International Oncology, 2024, 51(6): 359-363. | 
| [5] | Wang Ying, Liu Nan, Guo Bing. Advances of antibody-drug conjugate in the therapy of metastatic breast cancer [J]. Journal of International Oncology, 2024, 51(6): 364-369. | 
| [6] | Zhang Rui, Chu Yanliu. Research progress of colorectal cancer risk assessment models based on FIT and gut microbiota [J]. Journal of International Oncology, 2024, 51(6): 370-375. | 
| [7] | Gao Fan, Wang Ping, Du Chao, Chu Yanliu. Research progress on intestinal flora and non-surgical treatment of the colorectal cancer [J]. Journal of International Oncology, 2024, 51(6): 376-381. | 
| [8] | Fan Zhipeng, Yu Jing, Hu Jing, Liao Zhengkai, Xu Yu, Ouyang Wen, Xie Conghua. Predictive value of changes in inflammatory markers for prognosis in patients with advanced non-small cell lung cancer treated with the first-line immunotherapy plus chemotherapy [J]. Journal of International Oncology, 2024, 51(5): 257-266. | 
| [9] | Wang Junyi, Hong Kaibin, Ji Rongjia, Chen Dachao. Effect of cancer nodules on liver metastases after radical resection of colorectal cancer [J]. Journal of International Oncology, 2024, 51(5): 280-285. | 
| [10] | Wang Peixin, Zhao Jun, Xu Shihong, Jiang Zhaoyang, Wang Xiaoqiang, Yang Hongjuan. Progress of ferroptosis-related mechanisms in osteosarcoma [J]. Journal of International Oncology, 2024, 51(5): 308-311. | 
| [11] | Yang Hao, Shi Guidong, Zhang Chengcheng, Zhang Yue, Zhang Liwen, Fu Maoyong. Comparison of efficacy and safety between sintilimab and tislelizumab in neoadjuvant therapy for advanced esophageal squamous cell carcinoma [J]. Journal of International Oncology, 2024, 51(4): 210-216. | 
| [12] | Sa Qiang, Xu Hangcheng, Wang Jiayu. Advances in immunotherapy for breast cancer [J]. Journal of International Oncology, 2024, 51(4): 227-234. | 
| [13] | Yang Zhi, Lu Yiqiao, Gu Huayan, Ding Jialing, Guo Guilong. Research progress of tumor microenvironment mediated drug resistance in targeted therapy of breast cancer [J]. Journal of International Oncology, 2024, 51(4): 235-238. | 
| [14] | Sun Weiwei, Yao Xuemin, Wang Pengjian, Wang Jing, Jia Jinghao. Exploration of prognostic factors and nomogram construction for advanced non-small cell lung cancer treated with immunotherapy based on hematologic indexes [J]. Journal of International Oncology, 2024, 51(3): 143-150. | 
| [15] | Qian Xiaotao, Shi Ziyi, Hu Ge. A real-world clinical study of immunocheckpoint inhibitor maintenance therapy after radical radiotherapy and chemotherapy in stage Ⅲ-ⅣA esophageal squamous cell carcinoma [J]. Journal of International Oncology, 2024, 51(3): 151-156. | 
| Viewed | ||||||
| 
										Full text | 
									
										 | 
								|||||
| 
										Abstract | 
									
										 | 
								|||||
