Journal of International Oncology ›› 2023, Vol. 50 ›› Issue (5): 294-298.doi: 10.3760/cma.j.cn371439-20230111-00059
• Reviews • Previous Articles Next Articles
Ju Yifan, Xu Chenyang, Lei Dapeng()
Received:
2023-01-11
Revised:
2023-01-27
Online:
2023-05-08
Published:
2023-06-27
Contact:
Lei Dapeng
E-mail:leidapeng@sdu.edu.cn
Supported by:
Ju Yifan, Xu Chenyang, Lei Dapeng. Research progress of pathomics in head and neck neoplasms[J]. Journal of International Oncology, 2023, 50(5): 294-298.
[1] |
Pisani P, Airoldi M, Allais A, et al. Metastatic disease in head & neck oncology[J]. Acta Otorhinolaryngol Ital, 2020, 40(SUPPL. 1): S1-S86. DOI: 10.14639/0392-100X-suppl.1-40-2020.
doi: 10.14639/0392-100X-suppl.1-40-2020 |
[2] |
Meccariello G, Maniaci A, Bianchi G, et al. Neck dissection and trans oral robotic surgery for oropharyngeal squamous cell carcinoma[J]. Auris Nasus Larynx, 2022, 49(1): 117-125. DOI: 10.1016/j.anl.2021.05.007.
doi: 10.1016/j.anl.2021.05.007 |
[3] |
Chi AC, Katabi N, Chen HS, et al. Interobserver variation among pathologists in evaluating perineural invasion for oral squamous cell carcinoma[J]. Head Neck Pathol, 2016, 10(4): 451-464. DOI: 10.1007/s12105-016-0722-9.
doi: 10.1007/s12105-016-0722-9 pmid: 27140176 |
[4] |
Elmore JG, Longton GM, Carney PA, et al. Diagnostic concordance among pathologists interpreting breast biopsy specimens[J]. JAMA, 2015, 313(11): 1122-1132. DOI: 10.1001/jama.2015.1405.
doi: 10.1001/jama.2015.1405 pmid: 25781441 |
[5] |
Niazi MKK, Parwani AV, Gurcan MN. Digital pathology and artificial intelligence[J]. Lancet Oncol, 2019, 20(5): e253-e261. DOI: 10.1016/S1470-2045(19)30154-8.
doi: 10.1016/S1470-2045(19)30154-8 |
[6] |
Bera K, Schalper KA, Rimm DL, et al. Artificial intelligence in digital pathology—new tools for diagnosis and precision oncology[J]. Nat Rev Clin Oncol, 2019, 16(11): 703-715. DOI: 10.1038/s41571-019-0252-y.
doi: 10.1038/s41571-019-0252-y |
[7] |
Prewitt JM, Mendelsohn ML. The analysis of cell images[J]. Ann N Y Acad Sci, 1966, 128(3): 1035-1053. DOI: 10.1111/j.1749-6632.1965.tb11715.x.
doi: 10.1111/j.1749-6632.1965.tb11715.x |
[8] |
Wright AM, Smith D, Dhurandhar B, et al. Digital slide imaging in cervicovaginal cytology: a pilot study[J]. Arch Pathol Lab Med, 2013, 137(5): 618-624. DOI: 10.5858/arpa.2012-0430-OA.
doi: 10.5858/arpa.2012-0430-OA pmid: 22970841 |
[9] |
Wang S, Yang DM, Rong R, et al. Pathology image analysis using segmentation deep learning algorithms[J]. Am J Pathol, 2019, 189(9): 1686-1698. DOI: 10.1016/j.ajpath.2019.05.007.
doi: S0002-9440(18)31121-0 pmid: 31199919 |
[10] |
Jacques SL. Optical properties of biological tissues: a review[J]. Phys Med Biol, 2013, 58(11): R37-R61. DOI: 10.1088/0031-9155/58/11/R37.
doi: 10.1088/0031-9155/58/11/R37 |
[11] |
Lu G, Fei B. Medical hyperspectral imaging: a review[J]. J Biomed Opt, 2014, 19(1): 10901. DOI: 10.1117/1.JBO.19.1.010901.
doi: 10.1117/1.JBO.19.1.010901 pmid: 24441941 |
[12] |
Manolakis D, Shaw G. Detection algorithms for hyperspectral ima-ging applications[J]. IEEE Signal Process Mag, 2002, 19(1): 29-43. DOI: 10.1109/79.974724.
doi: 10.1109/79.974724 |
[13] |
Lu S, Stein JE, Rimm DL, et al. Comparison of biomarker modalities for predicting response to PD-1/PD-L1 checkpoint blockade: a systematic review and meta-analysis[J]. JAMA Oncol, 2019, 5(8): 1195-1204. DOI: 10.1001/jamaoncol.2019.1549.
doi: 10.1001/jamaoncol.2019.1549 |
[14] |
Bodenmiller B. Multiplexed epitope-based tissue imaging for disco-very and healthcare applications[J]. Cell Syst, 2016, 2(4): 225-238. DOI: 10.1016/j.cels.2016.03.008.
doi: 10.1016/j.cels.2016.03.008 pmid: 27135535 |
[15] |
Mansoor I, Zalles C, Zahid F, et al. Fine-needle aspiration of folli-cular adenoma versus parathyroid adenoma: the utility of multis-pectral imaging in differentiating lesions with subtle cyto-morphologic differences[J]. Cancer, 2008, 114(1): 22-26. DOI: 10.1002/cncr.23252.
doi: 10.1002/cncr.23252 |
[16] |
Halicek M, Little JV, Wang X, et al. Optical biopsy of head and neck cancer using hyperspectral imaging and convolutional neural networks[J]. J Biomed Opt, 2019, 24(3): 1-9. DOI: 10.1117/1.JBO.24.3.036007.
doi: 10.1117/1.JBO.24.3.036007 pmid: 30891966 |
[17] |
Baik J, Ye Q, Zhang L, et al. Automated classification of oral premalignant lesions using image cytometry and Random Forests-based algorithms[J]. Cell Oncol (Dordr), 2014, 37(3): 193-202. DOI: 10.1007/s13402-014-0172-x.
doi: 10.1007/s13402-014-0172-x |
[18] |
Wang Y, Guan Q, Lao I, et al. Using deep convolutional neural networks for multi-classification of thyroid tumor by histopathology: a large-scale pilot study[J]. Ann Transl Med, 2019, 7(18): 468. DOI: 10.21037/atm.2019.08.54.
doi: 10.21037/atm.2019.08.54 pmid: 31700904 |
[19] |
Araújo T, Aresta G, Castro E, et al. Classification of breast cancer histology images using Convolutional Neural Networks[J]. PLoS One, 2017, 12(6): e0177544. DOI: 10.1371/journal.pone.0177544.
doi: 10.1371/journal.pone.0177544 |
[20] |
Han Z, Wei B, Zheng Y, et al. Breast cancer multi-classification from histopathological images with structured deep learning model[J]. Sci Rep, 2017, 7(1): 4172. DOI: 10.1038/s41598-017-04075-z.
doi: 10.1038/s41598-017-04075-z pmid: 28646155 |
[21] |
Ringash J. Survivorship and quality of life in head and neck cancer[J]. J Clin Oncol, 2015, 33(29): 3322-3327. DOI: 10.1200/JCO.2015.61.4115.
doi: 10.1200/JCO.2015.61.4115 pmid: 26351336 |
[22] |
Lu G, Little JV, Wang X, et al. Detection of head and neck cancer in surgical specimens using quantitative hyperspectral imaging[J]. Clin Cancer Res, 2017, 23(18): 5426-5436. DOI: 10.1158/1078-0432.CCR-17-0906.
doi: 10.1158/1078-0432.CCR-17-0906 pmid: 28611203 |
[23] |
Halicek M, Dormer JD, Little JV, et al. Hyperspectral imaging of head and neck squamous cell carcinoma for cancer margin detection in surgical specimens from 102 patients using deep learning[J]. Cancers (Basel), 2019, 11(9): 1367. DOI: 10.3390/cancers11091367.
doi: 10.3390/cancers11091367 |
[24] |
Labani-Motlagh A, Ashja-Mahdavi M, Loskog A. The tumor micro-environment: a milieu hindering and obstructing antitumor immune responses[J]. Front Immunol, 2020, 11: 940. DOI: 10.3389/fimmu.2020.00940.
doi: 10.3389/fimmu.2020.00940 pmid: 32499786 |
[25] |
Tong CC, Kao J, Sikora AG. Recognizing and reversing the im-munosuppressive tumor microenvironment of head and neck cancer[J]. Immunol Res, 2012, 54(1/3): 266-274. DOI: 10.1007/s12026-012-8306-6.
doi: 10.1007/s12026-012-8306-6 |
[26] |
Wondergem NE, Nauta IH, Muijlwijk T, et al. The immune micro-environment in head and neck squamous cell carcinoma: on subsets and subsites[J]. Curr Oncol Rep, 2020, 22(8): 81. DOI: 10.1007/s11912-020-00938-3.
doi: 10.1007/s11912-020-00938-3 pmid: 32602047 |
[27] |
Peled M, Onn A, Herbst RS. Tumor-infiltrating lymphocytes-location for prognostic evaluation[J]. Clin Cancer Res, 2019, 25(5): 1449-1451. DOI: 10.1158/1078-0432.CCR-18-3803.
doi: 10.1158/1078-0432.CCR-18-3803 pmid: 30567833 |
[28] |
Hartman DJ, Ahmad F, Ferris RL, et al. Utility of CD8 score by automated quantitative image analysis in head and neck squamous cell carcinoma[J]. Oral Oncol, 2018, 86: 278-287. DOI: 10.1016/j.oraloncology.2018.10.005.
doi: S1368-8375(18)30358-0 pmid: 30409313 |
[29] |
Shaban M, Khurram SA, Fraz MM, et al. A novel digital score for abundance of tumour infiltrating lymphocytes predicts disease free survival in oral squamous cell carcinoma[J]. Sci Rep, 2019, 9(1): 13341. DOI: 10.1038/s41598-019-49710-z.
doi: 10.1038/s41598-019-49710-z pmid: 31527658 |
[30] |
Shaban M, Raza SEA, Hassan M, et al. A digital score of tumour-associated stroma infiltrating lymphocytes predicts survival in head and neck squamous cell carcinoma[J]. J Pathol, 2022, 256(2): 174-185. DOI: 10.1002/path.5819.
doi: 10.1002/path.5819 |
[31] |
Fraz MM, Khurram SA, Graham S, et al. FABnet: feature attention-based network for simultaneous segmentation of microvessels and nerves in routine histology images of oral cancer[J]. Neural Comput Appl, 2020, 32(14): 9915-9928. DOI: 10.1007/s00521-019-04516-y.
doi: 10.1007/s00521-019-04516-y |
[32] |
Das DK, Bose S, Maiti AK, et al. Automatic identification of clinically relevant regions from oral tissue histological images for oral squamous cell carcinoma diagnosis[J]. Tissue Cell, 2018, 53: 111-119. DOI: 10.1016/j.tice.2018.06.004.
doi: S0040-8166(18)30113-7 pmid: 30060821 |
[33] |
Cyll K, Ersvær E, Vlatkovic L, et al. Tumour heterogeneity poses a significant challenge to cancer biomarker research[J]. Br J Cancer, 2017, 117(3): 367-375. DOI: 10.1038/bjc.2017.171.
doi: 10.1038/bjc.2017.171 |
[34] |
de Ruiter EJ, de Roest RH, Brakenhoff RH, et al. Digital pathology-aided assessment of tumor-infiltrating T lymphocytes in advanced stage, HPV-negative head and neck tumors[J]. Cancer Immunol Immunother, 2020, 69(4): 581-591. DOI: 10.1007/s00262-020-02481-3.
doi: 10.1007/s00262-020-02481-3 pmid: 31980916 |
[35] |
Humphries MP, Craig SG, Kacprzyk R, et al. The adaptive immune and immune checkpoint landscape of neoadjuvant treated esophageal adenocarcinoma using digital pathology quantitation[J]. BMC Cancer, 2020, 20(1): 500. DOI: 10.1186/s12885-020-06987-y.
doi: 10.1186/s12885-020-06987-y pmid: 32487090 |
[36] |
Janowczyk A, Madabhushi A. Deep learning for digital pathology image analysis: a comprehensive tutorial with selected use cases[J]. J Pathol Inform, 2016, 7: 29. DOI: 10.4103/2153-3539.186902.
doi: 10.4103/2153-3539.186902 pmid: 27563488 |
[37] |
Rudin C. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead[J]. Nat Mach Intell, 2019, 1(5): 206-215. DOI: 10.1038/s42256-019-0048-x.
doi: 10.1038/s42256-019-0048-x pmid: 35603010 |
[1] | Liu Na, Kou Jieli, Yang Feng, Liu Taotao, Li Danping, Han Junrui, Yang Lizhou. Clinical value of serum miR-106b-5p and miR-760 combined with low-dose spiral CT in the diagnosis of early lung cancer [J]. Journal of International Oncology, 2024, 51(6): 321-325. |
[2] | Qian Xiaotao, Shi Ziyi, Hu Ge, Wu Xiaowei. Efficacy of consolidation chemotherapy after radical radiotherapy and chemotherapy for stage Ⅲ-ⅣA esophageal squamous cell carcinoma: a real-world clinical study [J]. Journal of International Oncology, 2024, 51(6): 326-331. |
[3] | Yang Mi, Bie Jun, Zhang Jiayong, Deng Jiaxiu, Tang Zuge, Lu Jun. Analysis of the efficacy and prognosis of neoadjuvant therapy for locally advanced resectable esophageal cancer [J]. Journal of International Oncology, 2024, 51(6): 332-337. |
[4] | Yuan Jian, Huang Yanhua. Diagnostic value of Hp-IgG antibody combined with serum DKK1 and sB7-H3 in early gastric cancer [J]. Journal of International Oncology, 2024, 51(6): 338-343. |
[5] | Fan Zhipeng, Yu Jing, Hu Jing, Liao Zhengkai, Xu Yu, Ouyang Wen, Xie Conghua. Predictive value of changes in inflammatory markers for prognosis in patients with advanced non-small cell lung cancer treated with the first-line immunotherapy plus chemotherapy [J]. Journal of International Oncology, 2024, 51(5): 257-266. |
[6] | Yang Lin, Lu Ning, Wen Hua, Zhang Mingxin, Zhu Lin. Study on the clinical relationship between inflammatory burden index and gastric cancer [J]. Journal of International Oncology, 2024, 51(5): 274-279. |
[7] | Zhang Ningning, Yang Zhe, Tan Limei, Li Zhenning, Wang Di, Wei Yongzhi. Diagnostic value of cervical cell DNA ploidy analysis combined with B7-H4 and PKCδ for cervical cancer [J]. Journal of International Oncology, 2024, 51(5): 286-291. |
[8] | Chen Qi, Xu Chenyang, Wang Yin, Lei Dapeng. Current application status of hyperspectral imaging in the diagnosis and treatment of head and neck tumor [J]. Journal of International Oncology, 2024, 51(5): 298-302. |
[9] | Liu Pingping, He Xuefang, Zhang Yi, Yang Xu, Zhang Shanshan, Ji Yifei. Risk factors of postoperative recurrence in patients with primary brain glioma and prediction model construction [J]. Journal of International Oncology, 2024, 51(4): 193-197. |
[10] | Wan Fang, Yang Gang, Li Rui, Wan Qijing. Expression levels and clinical significance of serum miR-497 and miR-383 in patients with esophageal cancer [J]. Journal of International Oncology, 2024, 51(4): 204-209. |
[11] | Yao Yixin, Shen Yulin. Predictive value of serum SOCS3 and TXNIP levels for the prognosis of patients with hepatocellular carcinoma treated with TACE [J]. Journal of International Oncology, 2024, 51(4): 217-222. |
[12] | Sun Weiwei, Yao Xuemin, Wang Pengjian, Wang Jing, Jia Jinghao. Exploration of prognostic factors and nomogram construction for advanced non-small cell lung cancer treated with immunotherapy based on hematologic indexes [J]. Journal of International Oncology, 2024, 51(3): 143-150. |
[13] | Zhang Lili, Tan Ru, Fang Xueli, Yang Yu, Sang Zheng, Li Baosheng. Imaging diagnosis, pathological upgrade, and imaging technology progress of ductal carcinoma in situ of the breast [J]. Journal of International Oncology, 2024, 51(3): 166-169. |
[14] | Liu Yulan, Jing Haiyan, Sun Jing, Song Wei, Sha Dan. Advances in predicting efficacy and prognostic markers of immunotherapy for gastric cancer [J]. Journal of International Oncology, 2024, 51(3): 175-180. |
[15] | Peng Qin, Cai Yuting, Wang Wei. Advances on KPNA2 in liver cancer [J]. Journal of International Oncology, 2024, 51(3): 181-185. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||