Journal of International Oncology ›› 2021, Vol. 48 ›› Issue (6): 362-365.doi: 10.3760/cma.j.cn371439-20200617-00069
• Reviews • Previous Articles Next Articles
Guo Shihao, Ren Yeqing, Guo Geng()
Received:
2020-06-17
Revised:
2020-07-17
Online:
2021-06-08
Published:
2021-06-24
Contact:
Guo Geng
E-mail:guogeng973@163.com
Supported by:
Guo Shihao, Ren Yeqing, Guo Geng. Molecular mechanism of vasculogenic mimicry in brain glioma[J]. Journal of International Oncology, 2021, 48(6): 362-365.
[1] | Wen PY, Reardon DA. Neuro-oncology in 2015: progress in glioma diagnosis, classification and treatment[J]. Nat Rev Neurol, 2016,12(2):69-70. DOI: 10.1038/nrneurol.2015.242. |
[2] |
Maniotis AJ, Folberg R, Hess A, et al. Vascular channel formation by human melanoma cells in vivo and in vitro: vaseulogenie mimicry[J]. Am J Pathol, 1999,155(3):739-752. DOI: 10.1016/S0002-9440(10)65173-5.
pmid: 10487832 |
[3] | 白驹, 徐志杰, 廖朝亮 , 等. 血管形成拟态在肿瘤中的研究进展[J]. 中南大学学报(医学版), 2017,42(3):357-364. DOI: 10.11817/j.issn.1672-7347.2017.03.020. |
[4] |
Zhang X, Zhang J, Zhou H, et al. Molecular mechanisms and anticancer therapeutic strategies in vasculogenic mimicry[J]. J Cancer, 2019,10(25):6327-6340. DOI: 10.7150/jca.34171.
doi: 10.7150/jca.34171 pmid: 31772665 |
[5] |
Ge H, Luo H. Overview of advances in vasculogenic mimicry—a potential target for tumor therapy[J]. Cancer Manag Res, 2018,10:2429-2437. DOI: 10.2147/CMAR.S164675.
doi: 10.2147/CMAR |
[6] |
El Hallani S, Boisselier B, Peglion F, et al. A new alternative mechanism in glioblastoma vascularization: tubular vasculogenic mimicry[J]. Brain, 2010,133(Pt 4):973-982. DOI: 10.1093/brain/awq044.
doi: 10.1093/brain/awq044 |
[7] |
Sun W, Fan YZ, Zhang WZ, et al. A pilot histomorphology and hemodynamic of vasculogenic mimicry in gallbladder carcinomas in vivo and in vitro[J]. J Exp Clin Cancer Res, 2011,30(1):46. DOI: 10.1186/1756-9966-30-46.
doi: 10.1186/1756-9966-30-46 |
[8] | Williamson SC, Metcalf RL, Trapani F, et al. Vasculogenic mimicry in small cell lung cancer[J]. Nat Commu, 2016,7:13322. DOI: 10.1038/ncomms13322. |
[9] | Angara K, Rashid MH, Shankar A, et al. Vascular mimicry in glioblastoma following anti-angiogenic and anti-20-HETE therapies[J]. Histol Histopathol, 2017,32(9):917-928. DOI: 10.14670/HH-11-856. |
[10] |
Yang J, Zhu DM, Zhou XG, et al. HIF-2α promotes the formation of vasculogenic mimicry in pancreatic cancer by regulating the binding of Twist1 to the VE-cadherin promoter[J]. Oncotarget, 2017,8(29):47801-47815. DOI: 10.18632/oncotarget.17999.
doi: 10.18632/oncotarget.v8i29 |
[11] | Li J, Ke Y, Huang S, et al. Inhibitory effects of B-cell lymphoma 2 on the vasculogenic mimicry of hypoxic human glioma cells[J]. ExTher Med, 2015,9(3):977-981. DOI: 10.3892/etm.2014.2162. |
[12] |
Guo X, Xu S, Gao X, et al. Macrophage migration inhibitory factor promotes vasculogenic mimicry formation induced by hypoxia via CXCR4/AKT/EMT pathway in human glioblastoma cells[J]. Oncotarget, 2017,8(46):80358-80372. DOI: 10.18632/oncotarget.18673.
doi: 10.18632/oncotarget.v8i46 |
[13] |
Zhu Y, Liu X, Zhao P, et al. Celastrol suppresses glioma vasculogenic mimicry formation and angiogenesis by blocking the PI3K/Akt/mTOR signaling pathway[J]. Front Pharmacol, 2020,11:25. DOI: 10.3389/fphar.2020.00025.
doi: 10.3389/fphar.2020.00025 |
[14] | Li X, Xue Y, Liu X, et al. ZRANB2/SNHG20/FOXK1 Axis regulates vasculogenic mimicry formation in glioma[J]. J Exp Clin Can-cer Res, 2019,38(1):68. DOI: 10.1186/s13046-019-1073-7. |
[15] |
Delgado-Bellido D, Serrano-Saenz S, Fernández-Cortés M, et al. Vasculogenic mimicry signaling revisited: focus on non-vascular VE-cadherin[J]. Mol Cancer, 2017,16(1):65. DOI: 10.1186/s12943-017-0631-x.
doi: 10.1186/s12943-017-0631-x pmid: 28320399 |
[16] | Liu S, Zhang SM, Ju RJ, et al. Antitumor efficacy of Lf modified daunorubicin plus honokiol liposomes in treatment of brain glioma[J]. Eur J Phar Sci, 2017,106:185-197. DOI: 10.1016/j.ejps.2017.06.002. |
[17] |
Liu X, Wang JH, Li S, et al. Histone deacetylase 3 expression correlates with vasculogenic mimicry through the phosphoinositide 3-kinase/ERK-MMP-laminin5γ2 signaling pathway[J]. Cancer Sci, 2015,106(7):857-866. DOI: 10.1111/cas.12684.
doi: 10.1111/cas.2015.106.issue-7 |
[18] |
Guo J, Cai H, Liu X, et al. Long non-coding RNA LINC00339 stimulates glioma vasculogenic mimicry formation by regulating the miR-539-5p/TWIST1/MMPs axis[J]. Mol Ther Nucleic Acids, 2018,10:170-186. DOI: 10.1016/j.omtn.2017.11.011.
doi: 10.1016/j.omtn.2017.11.011 |
[19] |
Zhang L, Xu Y, Sun J, et al. M2-like tumor-associated macrophages drive vasculogenic mimicry through amplification of IL-6 expre-ssion in glioma cells[J]. Oncotarget, 2017,8(1):819-832. DOI: 10.18632/oncotarget.13661.
doi: 10.18632/oncotarget.13661 pmid: 27903982 |
[20] |
Yu W, Ding J, He M, et al. Estrogen receptor β promotes the vasculogenic mimicry (VM) and cell invasion via altering the lncRNA-MALAT1/miR-145-5p/NEDD9 signals in lung cancer[J]. Oncogene, 2019,38(8):1225-1238. DOI: 10.1038/s41388-018-0463-1.
doi: 10.1038/s41388-018-0463-1 |
[21] | Li G, Huang M, Cai Y, et al. miR-141 inhibits glioma vasculogenic mimicry by controlling EphA2 expression[J]. Mol Med Rep, 2018,18(2):1395-1404. DOI: 10.3892/mmr.2018.9108. |
[22] |
Gao Y, Yu H, Liu Y, et al. Long non-coding RNA HOXA-AS2 regulates malignant glioma behaviors and vasculogenic mimicry formation via the MiR-373/EGFR axis[J]. Cell Physiol Biochem, 2018,45(1):131-147. DOI: 10.1159/000486253.
doi: 10.1159/000486253 |
[23] |
Wang D, Zheng J, Liu X, et al. Knockdown of USF1 inhibits the vasculogenic mimicry of glioma cells via stimulating SNHG16/miR-212-3p and linc00667/miR-429 axis[J]. Mol Ther Nucleic Acids, 2019,14:465-482. DOI: 10.1016/j.omtn.2018.12.017.
doi: 10.1016/j.omtn.2018.12.017 |
[24] |
Yang J, Lu Y, Lin YY, et al. Vascular mimicry formation is promoted by paracrine TGF-β and SDF1 of cancer-associatedfibroblasts and inhibited by miR-101 in hepatocellular carcinoma[J]. Cancer Lett, 2016,383(1):18-27. DOI: 10.1016/j.canlet.2016.09.012.
doi: 10.1016/j.canlet.2016.09.012 |
[25] |
Ling G, Wang S, Song Z, et al. Transforming growth factor-β is required for vasculogenic mimicry formation in glioma cell line U251MG[J]. Cancer Biol Ther, 2011,12(11):978-988. DOI: 10.4161/cbt.12.11.18155.
doi: 10.4161/cbt.12.11.18155 |
[26] |
Ling G, Ji Q, Ye W, et al. Epithelial-mesenchymal transition regulated by p38/MAPK signaling pathways participates in vasculogenic mimicry formation in SHG44 cells transfected with TGF-β cDNA loaded lentivirus in vitro and in vivo[J]. Int J Oncol, 2016,49(6):2387-2398. DOI: 10.3892/ijo.2016.3724.
doi: 10.3892/ijo.2016.3724 |
[27] |
Zhang C, Chen WL, Zhang X, et al. Galunisertib inhibits glioma vasculogenic mimicry formation induced by astrocytes[J]. Sci Rep, 2016,6:23056. DOI: 10.1038/srep23056.
doi: 10.1038/srep23056 |
[28] |
Cai HP, Wang J, Xi SY, et al. Tenascin-cmediated vasculogenic mimicry formation via regulation of MMP2/MMP9 in glioma[J]. Cell Death Dis, 2019,10(12):879. DOI: 10.1038/s41419-019-2102-3.
doi: 10.1038/s41419-019-2102-3 |
[29] |
Liu Y, Li F, Yang YT, et al. IGFBP2 promotes vasculogenic mimicry formation via regulating CD144 and MMP2 expression in glioma[J]. Oncogene, 2019,38(11):1815-1831. DOI: 10.1038/s41388-018-0525-4.
doi: 10.1038/s41388-018-0525-4 pmid: 30368528 |
[30] |
Zhang F, Chu J, Wang F. Expression and clinical significance of cyclooxygenase 2 and survivin in human gliomas[J]. Oncol Lett, 2017,14(2):1303-1308. DOI: 10.3892/ol.2017.6281.
doi: 10.3892/ol.2017.6281 pmid: 28789345 |
[31] |
Rong X, Huang B, Qiu S, et al. Tumor-associated macrophages induce vasculogenic mimicry of glioblastoma multiforme through cyclooxygenase-2 activation[J]. Oncotarget, 2016,7(51):83976-83986. DOI: 10.18632/oncotarget.6930.
doi: 10.18632/oncotarget.v7i51 |
[32] | Ju RJ, Zeng F, Liu L, et al. Destruction of vasculogenic mimicry channels by targeting epirubicin plus celecoxib liposomes in treatment of brain glioma[J]. Int J Nanomedicine, 2016,11:1131-1146. DOI: 10.2147/IJN.S94467. |
[33] |
Huang M, Ke Y, Sun X, et al. Mammalian target of rapamycin signaling is involved in the vasculogenic mimicry of glioma via hypoxia-inducible factor-1α[J]. Oncol Rep, 2014,32(5):1973-1980. DOI: 10.3892/or.2014.3454.
doi: 10.3892/or.2014.3454 |
[1] | Liu Pingping, He Xuefang, Zhang Yi, Yang Xu, Zhang Shanshan, Ji Yifei. Risk factors of postoperative recurrence in patients with primary brain glioma and prediction model construction [J]. Journal of International Oncology, 2024, 51(4): 193-197. |
[2] | Wang Liwei, Liang Hongsheng, Du Songlin, Chen Zhihao, Wang Qing, Gao Aili. Research progress of avermectins in anti-tumor [J]. Journal of International Oncology, 2022, 49(6): 353-356. |
[3] | Xiao Nan, Sun Pengfei. Research progress of oxidative stress in the sensitivity of chemoradiotherapy for gliomas [J]. Journal of International Oncology, 2022, 49(6): 357-361. |
[4] | Zhu Yishuo, Cui Yujie, Liu Qi, Li Jun, Fan Yuechao. Analysis of risk factors and prediction model establishment for early postoperative recurrence in glioma patients [J]. Journal of International Oncology, 2022, 49(2): 79-83. |
[5] | Kong Chunyu, Sun Pengfei. SLC7A11 and glioma [J]. Journal of International Oncology, 2022, 49(10): 604-607. |
[6] | Yang Chi, Luo Changjiang. Research progress on the background of inflammation, immunity and cholesterol metabolism in colorectal cancer [J]. Journal of International Oncology, 2022, 49(10): 630-634. |
[7] | Wang Xianwei, Shi Meiyan, Wang Fengqin, Qi Fu, Wang Chaozhe, Zhou Fei. Roles of TSA upregulation miR-4298 targeting inhibition of PADI4 expression in inducing U251 cells apoptosis [J]. Journal of International Oncology, 2021, 48(4): 193-199. |
[8] | Sun Yanqi, Ren Yeqing, Guo Geng. Mechanism of inhibitory effect of interferon and its related signal pathway on the invasion of glioma [J]. Journal of International Oncology, 2021, 48(3): 172-175. |
[9] | Zhao Congxuan, Yu Tao. Mining and prediction of glioma-related genes [J]. Journal of International Oncology, 2020, 47(5): 293-296. |
[10] | Nan Yang, Zhong Yue. New research advances of long non-coding RNA in glioma [J]. Journal of International Oncology, 2020, 47(2): 98-102. |
[11] | Zhang Wen, Song Qibin, Hu Weiguo. Clinical application of multimodal magnetic resonance imaging in glioma [J]. Journal of International Oncology, 2020, 47(11): 686-690. |
[12] | Chen Liang, Qin Jun, Lei Junrong, Liu Jun, Wang Lu. miR-1254 inhibits the proliferation and invasion of glioma cells by targeting CSF-1 [J]. Journal of International Oncology, 2020, 47(10): 577-584. |
[13] | Zhou Huiping, Li Yuhua, Wang Yuhui, Su Yilong, Yang Yingying, Xu Xiaotian, Duan Xiaoqun. Preventive and therapeutic effects of common plant drugs on colon cancer and its mechanism [J]. Journal of International Oncology, 2020, 47(1): 51-55. |
[14] | Zhang Qianhui, Zhang Yang, Su Weipeng, Zhang Song′an, Liu Pan, Zhao Huarong. Expressions of LSD1, MGMT and Ki-67 in high-grade glioma and their influences on prognosis [J]. Journal of International Oncology, 2019, 46(9): 519-525. |
[15] | Yi Lin, Qiu Shi. Anti-tumor effect and mechanisms of shikonin on gliomas [J]. Journal of International Oncology, 2019, 46(8): 489-491. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||