Journal of International Oncology ›› 2022, Vol. 49 ›› Issue (10): 604-607.doi: 10.3760/cma.j.cn371439-20220516-00119
• Reviews • Previous Articles Next Articles
Received:
2022-05-16
Revised:
2022-06-06
Online:
2022-10-08
Published:
2022-12-01
Contact:
Sun Pengfei
E-mail:ery_sunpf@lzu.edu.cn
Kong Chunyu, Sun Pengfei. SLC7A11 and glioma[J]. Journal of International Oncology, 2022, 49(10): 604-607.
[1] |
Mączyńska J, Raes F, Da Pieve C, et al. Triggering anti-GBM immune response with EGFR-mediated photoimmunotherapy[J]. BMC Med, 2022, 20(1) : 16. DOI: 10.1186/s12916-021-02213-z.
doi: 10.1186/s12916-021-02213-z |
[2] |
于学娟, 安宏伟, 孙亚梅, 等. MMP2、TIMP2、Ki-67、P53在胶质瘤组织中的表达及意义[J]. 国际肿瘤学杂志, 2019, 46(12): 718-722. DOI: 10.3760/cma.j.issn.1673-422X.2019.12.003.
doi: 10.3760/cma.j.issn.1673-422X.2019.12.003 |
[3] |
Byrne KF, Pal A, Curtin JF, et al. G-protein-coupled receptors as therapeutic targets for glioblastoma[J]. Drug Discov Today, 2021, 26(12): 2858-2870. DOI: 10.1016/j.drudis.2021.07.008.
doi: 10.1016/j.drudis.2021.07.008 pmid: 34271165 |
[4] |
Lin W, Wang C, Liu G, et al. SLC7A11/xCT in cancer: biological functions and therapeutic implications[J]. Am J Cancer Res, 2020, 10(10): 3106-3126.
pmid: 33163260 |
[5] |
Umans RA, Martin J, Harrigan ME, et al. Transcriptional regulation of amino acid transport in glioblastoma multiforme[J]. Cancers (Basel), 2021, 13(24): 6169. DOI: 10.3390/cancers13246169.
doi: 10.3390/cancers13246169 |
[6] |
Villalpando-Rodriguez GE, Gibson SB. Reactive oxygen species (ROS) regulates different types of cell death by acting as a rheostat[J]. Oxid Med Cell Longev, 2021, 2021: 9912436. DOI: 10.1155/2021/9912436.
doi: 10.1155/2021/9912436 |
[7] |
Patel D, Kharkar PS, Gandhi NS, et al. Novel analogs of sulfasalazine as system xc- antiporter inhibitors: insights from the molecular modeling studies[J]. Drug Dev Res, 2019, 80(6): 758-777. DOI: 10.1002/ddr.21557.
doi: 10.1002/ddr.21557 |
[8] |
Jiang X, Stockwell BR, Conrad M. Ferroptosis: mechanisms, biology and role in disease[J]. Nat Rev Mol Cell Biol, 2021, 22(4) : 266-282. DOI: 10.1038/s41580-020-00324-8.
doi: 10.1038/s41580-020-00324-8 |
[9] |
Dabrowska K, Skowronska K, Popek M, et al. The role of Nrf2 transcription factor and Sp1-Nrf2 protein complex in glutamine transporter SN1 regulation in mouse cortical astrocytes exposed to ammonia[J]. Int J Mol Sci, 2021, 22(20): 11233. DOI: 10.3390/ijms222011233.
doi: 10.3390/ijms222011233 |
[10] |
Yu D, Liu Y, Zhou Y, et al. Triptolide suppresses IDH1-mutated malignancy via Nrf2-driven glutathione metabolism[J]. Proc Natl Acad Sci U S A, 2020, 117(18): 9964-9972. DOI: 10.1073/pnas.1913633117.
doi: 10.1073/pnas.1913633117 pmid: 32312817 |
[11] |
Fan Z, Wirth AK, Chen D, et al. Nrf2-Keap1 pathway promotes cell proliferation and diminishes ferroptosis[J]. Oncogenesis, 2017, 6(8): e371. DOI: 10.1038/oncsis.2017.65.
doi: 10.1038/oncsis.2017.65 |
[12] |
Tang X, Fu X, Liu Y, et al. Blockade of glutathione metabolism in IDH1-mutated glioma[J]. Mol Cancer Ther, 2020, 19(1): 221-230. DOI: 10.1158/1535-7163.Mct-19-0103.
doi: 10.1158/1535-7163.Mct-19-0103 |
[13] |
Chen D, Rauh M, Buchfelder M, et al. The oxido-metabolic driver ATF4 enhances temozolamide chemo-resistance in human gliomas[J]. Oncotarget, 2017, 8(31): 51164-51176. DOI: 10.18632/oncotarget.17737.
doi: 10.18632/oncotarget.17737 pmid: 28881638 |
[14] |
Wang L, Liu Y, Du T, et al. ATF3 promotes erastin-induced ferroptosis by suppressing system Xc[J]. Cell Death Differ, 2020, 27(2): 662-675. DOI: 10.1038/s41418-019-0380-z.
doi: 10.1038/s41418-019-0380-z pmid: 31273299 |
[15] |
Yuan F, Sun Q, Zhang S, et al. The dual role of p62 in ferroptosis of glioblastoma according to p53 status[J]. Cell Biosci, 2022, 12(1): 20. DOI: 10.1186/s13578-022-00764-z.
doi: 10.1186/s13578-022-00764-z pmid: 35216629 |
[16] |
Li S, He Y, Chen K, et al. RSL3 drives ferroptosis through NF-κB pathway activation and GPX4 depletion in glioblastoma[J]. Oxid Med Cell Longev, 2021, 2021: 2915019. DOI: 10.1155/2021/2915019.
doi: 10.1155/2021/2915019 |
[17] |
Zhao X, Zhou M, Yang Y, et al. The ubiquitin hydrolase OTUB1 promotes glioma cell stemness via suppressing ferroptosis through stabilizing SLC7A11 protein[J]. Bioengineered, 2021, 12(2): 12636-12645. DOI: 10.1080/21655979.2021.2011633.
doi: 10.1080/21655979.2021.2011633 pmid: 34927544 |
[18] |
Suina K, Tsuchihashi K, Yamasaki J, et al. Epidermal growth factor receptor promotes glioma progression by regulating xCT and GluN2B-containing N-methyl-D-aspartate-sensitive glutamate receptor signaling[J]. Cancer Sci, 2018, 109(12): 3874-3882. DOI: 10.1111/cas.13826.
doi: 10.1111/cas.13826 |
[19] |
Yamamoto M, Teramoto K, Katoh H. Epidermal growth factor promotes glioblastoma cell death under glucose deprivation via upregulation of xCT (SLC7A11)[J]. Cell Signal, 2021, 78: 109874. DOI: 10.1016/j.cellsig.2020.109874.
doi: 10.1016/j.cellsig.2020.109874 |
[20] |
Hua C, Wang X, Liang S, et al. BNIP3 contributes to silibinin-induced DNA double strand breaks in glioma cells via inhibition of mTOR[J]. Biochem Biophys Res Commun, 2022, 589: 1-8. DOI: 10.1016/j.bbrc.2021.11.110.
doi: 10.1016/j.bbrc.2021.11.110 |
[21] |
Sorensen MF, Heimisdottir SB, Sorensen MD, et al. High expression of cystine-glutamate antiporter xCT (SLC7A11) is an independent biomarker for epileptic seizures at diagnosis in glioma[J]. J Neurooncol, 2018, 138(1): 49-53. DOI: 10.1007/s11060-018-2785-9.
doi: 10.1007/s11060-018-2785-9 |
[22] |
Chen D, Fan Z, Rauh M, et al. ATF4 promotes angiogenesis and neuronal cell death and confers ferroptosis in a xCT-dependent manner[J]. Oncogene, 2017, 36(40): 5593-5608. DOI: 10.1038/onc.2017.146.
doi: 10.1038/onc.2017.146 pmid: 28553953 |
[23] |
Wang W, Green M, Choi JE. CD8+ T cells regulate tumour ferroptosis during cancer immunotherapy[J]. Nature, 2019, 569(7755): 270-274. DOI: 10.1038/s41586-019-1170-y.
doi: 10.1038/s41586-019-1170-y |
[24] |
Liu X, Zhang Y, Zhuang L, et al. NADPH debt drives redox bankruptcy: SLC7A11/xCT-mediated cystine uptake as a double-edged sword in cellular redox regulation[J]. Genes Dis, 2021, 8(6): 731-745. DOI: 10.1016/j.gendis.2020.11.010.
doi: 10.1016/j.gendis.2020.11.010 pmid: 34522704 |
[25] |
Polewski MD, Reveron-Thornton RF, Cherryholmes GA. SLC7A11 overexpression in glioblastoma is associated with increased cancer stem cell-like properties[J]. Stem Cells Dev, 2017, 26(17): 1236-1246. DOI: 10.1089/scd.2017.0123.
doi: 10.1089/scd.2017.0123 pmid: 28610554 |
[26] |
Koch K, Hartmann R, Suwala AK, et al. Overexpression of cystine/glutamate antiporter xCT correlates with nutrient flexibility and ZEB1 expression in highly clonogenic glioblastoma stem-like cells (GSCs)[J]. Cancers (Basel), 2021, 13(23): 6001. DOI: 10.3390/cancers13236001.
doi: 10.3390/cancers13236001 |
[27] |
Jyotsana N, Ta KT, DelGiorno KE. The role of cystine/glutamate antiporter SLC7A11/xCT in the pathophysiology of cancer[J]. Front Oncol, 2022, 12: 858462. DOI: 10.3389/fonc.2022.858462.
doi: 10.3389/fonc.2022.858462 |
[28] |
Ye LF, Chaudhary KR, Zandkarimi F, et al. Radiation-induced lipid peroxidation triggers ferroptosis and synergizes with ferroptosis inducers[J]. ACS Chem Biol, 2020, 15(2): 469-484. DOI: 10.1021/acschembio.9b00939.
doi: 10.1021/acschembio.9b00939 pmid: 31899616 |
[29] |
Hu N, Hu WH, Zhou SL, et al. SLC7A11 negatively associates with mismatch repair gene expression and endows glioblastoma cells sensitive to radiation under low glucose conditions[J]. Neoplasma, 2021, 68(6): 1147-1156. DOI: 10.4149/neo_2021_210327N410.
doi: 10.4149/neo_2021_210327N410 pmid: 34427100 |
[30] |
Lang X, Green MD, Wang W, et al. Radiotherapy and immunotherapy promote tumoral lipid oxidation and ferroptosis via synergistic repression of SLC7A11[J]. Cancer Discov, 2019, 9(12): 1673-1685. DOI: 10.1158/2159-8290.CD-19-0338.
doi: 10.1158/2159-8290.CD-19-0338 pmid: 31554642 |
[31] |
Conrad M, Pratt DA. The chemical basis of ferroptosis[J]. Nat Chem Biol, 2019, 15(12): 1137-1147. DOI: 10.1038/s41589-019-0408-1.
doi: 10.1038/s41589-019-0408-1 pmid: 31740834 |
[32] |
Doll S, Freitas FP, Shah R, et al. FSP1 is a glutathione-independent ferroptosis suppressor[J]. Nature, 2019, 575(7784): 693-698. DOI: 10.1038/s41586-019-1707-0.
doi: 10.1038/s41586-019-1707-0 |
[33] |
Zille M, Kumar A, Kundu N, et al. Ferroptosis in neurons and cancer cells is similar but differentially regulated by histone deacetylase inhibitors[J]. eNeuro, 2019, 6(1): ENEURO.0263-0218.2019. DOI: 10.1523/eneuro.0263-18.2019.
doi: 10.1523/eneuro.0263-18.2019 |
[34] |
Alcoreza O, Jagarlamudi S, Savoia A, et al. Sulfasalazine decreases astrogliosis-mediated seizure burden[J]. Epilepsia, 2022, 63(4): 844-854. DOI: 10.1111/epi.17178.
doi: 10.1111/epi.17178 pmid: 35132640 |
[35] |
Hsieh CH, Huang YW, Tsai TF. Oral conventional synthetic disease-modifying antirheumatic drugs with antineoplastic potential: a review[J]. Dermatol Ther (Heidelb), 2022, 12(4): 835-860. DOI: 10.1007/s13555-022-00713-1.
doi: 10.1007/s13555-022-00713-1 |
[36] |
Yamaguchi I, Yoshimura SH, Katoh H. High cell density increases glioblastoma cell viability under glucose deprivation via degradation of the cystine/glutamate transporter xCT (SLC7A11)[J]. J Biol Chem, 2020, 295(20): 6936-6945. DOI: 10.1074/jbc.RA119.012213.
doi: 10.1074/jbc.RA119.012213 pmid: 32265299 |
[37] |
Teramoto K, H K. The cystine/glutamate antiporter xCT is a key regulator of EphA2 S897 phosphorylation under glucose-limited conditions[J]. Cell Signal, 2019, 62: 109329. DOI: 10.1016/j.cellsig.2019.05.014.
doi: 10.1016/j.cellsig.2019.05.014 |
[38] |
Gu Y, Albuquerque CP, Braas D, et al. mTORC2 regulates amino acid metabolism in cancer by phosphorylation of the cystine-glutamate antiporter xCT[J]. Mol Cell, 2017, 67(1): 128-138.e127. DOI: 10.1016/j.molcel.2017.05.030.
doi: S1097-2765(17)30394-5 pmid: 28648777 |
[1] | Qian Xiaotao, Shi Ziyi, Hu Ge, Wu Xiaowei. Efficacy of consolidation chemotherapy after radical radiotherapy and chemotherapy for stage Ⅲ-ⅣA esophageal squamous cell carcinoma: a real-world clinical study [J]. Journal of International Oncology, 2024, 51(6): 326-331. |
[2] | Yang Mi, Bie Jun, Zhang Jiayong, Deng Jiaxiu, Tang Zuge, Lu Jun. Analysis of the efficacy and prognosis of neoadjuvant therapy for locally advanced resectable esophageal cancer [J]. Journal of International Oncology, 2024, 51(6): 332-337. |
[3] | Liu Pingping, He Xuefang, Zhang Yi, Yang Xu, Zhang Shanshan, Ji Yifei. Risk factors of postoperative recurrence in patients with primary brain glioma and prediction model construction [J]. Journal of International Oncology, 2024, 51(4): 193-197. |
[4] | Qian Xiaotao, Shi Ziyi, Hu Ge. A real-world clinical study of immunocheckpoint inhibitor maintenance therapy after radical radiotherapy and chemotherapy in stage Ⅲ-ⅣA esophageal squamous cell carcinoma [J]. Journal of International Oncology, 2024, 51(3): 151-156. |
[5] | Lyu Lu, Sun Pengfei. Gut flora and cervical cancer [J]. Journal of International Oncology, 2023, 50(6): 373-376. |
[6] | Radiation Oncology Treatment Physician Branch, Chinese Medical Doctor Association, Radiation Oncology Therapy Branch, Chinese Medical Association, Chinese Association of Radiation Therapy, China Anti-Cancer Association. Chinese experts' consensus on the application of pegylated recombinant human granulocyte colony-stimulating factor during concurrent chemoradiotherapy (2023 version) [J]. Journal of International Oncology, 2023, 50(4): 193-201. |
[7] | Zhao Yongrui, Gao Ying, Chen Yidong, Xu Jiankun. Efficacy and safety of linear accelerator-based fractionated stereotactic radiotherapy for small volume brain metastases [J]. Journal of International Oncology, 2023, 50(3): 138-143. |
[8] | Gong Heyi, Yi Yan, Zhang Jian, Li Baosheng. Management strategies for locally advanced operable esophageal carcinoma achieving clinical complete response after neoadjuvant chemoradiotherapy [J]. Journal of International Oncology, 2023, 50(12): 745-750. |
[9] | Ma Xueyan, Lu Lili, Sun Pengfei. Advances in the immune microenvironment in cervical cancer [J]. Journal of International Oncology, 2023, 50(1): 47-50. |
[10] | Li Zhilei, Luo Jialin. Biological indexes for predicting sensitivity of preoperative concurrent chemoradiotherapy for locally advanced rectal cancer [J]. Journal of International Oncology, 2022, 49(9): 564-567. |
[11] | Wu Puyuan, Qi Liang, Wang Tao, Shi Minke, Sun Yuwei, Wang Lifeng, Liu Baorui, Yan Jing, Ren Wei. Efficacy of postoperative radiotherapy based on modified clinical target volume according to high-frequency recurrence regions in patients with esophageal squamous cell carcinoma [J]. Journal of International Oncology, 2022, 49(8): 464-472. |
[12] | Xia Lingling, Chen Yongshun, Li Bin, Ning Tingting, Zhang Caiyutian. Comparison of safety and efficacy between chemoradiotherapy and chemotherapy after R0 resection in pN+ esophageal squamous cell carcinoma patients [J]. Journal of International Oncology, 2022, 49(6): 334-339. |
[13] | Xiao Nan, Sun Pengfei. Research progress of oxidative stress in the sensitivity of chemoradiotherapy for gliomas [J]. Journal of International Oncology, 2022, 49(6): 357-361. |
[14] | Ye Qian, Ling Zhi, Liu Shenxiang, Lu Guotao, Yin Xudong. Effects of sarcopenia on the clinical efficacy and prognosis of radical radiotherapy in elderly patients with esophageal cancer [J]. Journal of International Oncology, 2022, 49(4): 199-205. |
[15] | Zhu Yishuo, Cui Yujie, Liu Qi, Li Jun, Fan Yuechao. Analysis of risk factors and prediction model establishment for early postoperative recurrence in glioma patients [J]. Journal of International Oncology, 2022, 49(2): 79-83. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||