Journal of International Oncology ›› 2022, Vol. 49 ›› Issue (3): 177-180.doi: 10.3760/cma.j.cn371439-20211115-00030
• Reviews • Previous Articles Next Articles
Luo Hong, Yin Hong(), Hu Guangyue, Tao Hong
Received:
2021-11-15
Revised:
2021-12-22
Online:
2022-03-08
Published:
2022-03-22
Contact:
Yin Hong
E-mail:hongyin_74@126.com
Luo Hong, Yin Hong, Hu Guangyue, Tao Hong. Predictive value of serum inflammatory markers in immunotherapy of non-small cell lung cancer[J]. Journal of International Oncology, 2022, 49(3): 177-180.
[1] |
Global Burden of Disease Cancer Collaboration; Fitzmaurice C, Abate D, et al. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 29 cancer groups, 1990 to 2017: a systematic analysis for the global burden of disease study[J]. JAMA Oncol, 2019, 5(12):1749-1768. DOI: 10.1001/jamaoncol.2019.2996.
doi: 10.1001/jamaoncol.2019.2996 pmid: 31560378 |
[2] |
Joshi S, Durden DL. Combinatorial approach to improve cancer immunotherapy: rational drug design strategy to simultaneously hit multiple targets to kill tumor cells and to activate the immune system[J]. J Oncol, 2019, 2019:5245034. DOI: 10.1155/2019/5245034.
doi: 10.1155/2019/5245034 |
[3] |
Mok TSK, Wu YL, Kudaba I, et al. Pembrolizumab versus chemotherapy for previously untreated, PD-L1-expressing, locally advanced or metastatic non-small-cell lung cancer (KEYNOTE-042): a randomised, open-label, controlled, phase 3 trial[J]. Lancet, 2019, 393(10183):1819-1830. DOI: 10.1016/S0140-6736(18)32409-7.
doi: 10.1016/S0140-6736(18)32409-7 |
[4] |
Wojas-Krawczyk K, Kalinka E, Grenda A, et al. Beyond PD-L1 markers for lung cancer immunotherapy[J]. Int J Mol Sci, 2019, 20(8):1915. DOI: 10.3390/ijms20081915.
doi: 10.3390/ijms20081915 |
[5] |
Rossi JF, Lu ZY, Massart C, et al. Dynamic immune/inflammation precision medicine: the good and the bad inflammation in infection and cancer[J]. Front Immunol, 2021, 12:595722. DOI: 10.3389/fimmu.2021.595722.
doi: 10.3389/fimmu.2021.595722 |
[6] |
Zhao H, Wu L, Yan G, et al. Inflammation and tumor progression: signaling pathways and targeted intervention[J]. Signal Transduct Target Ther, 2021, 6(1):263. DOI: 10.1038/s41392-021-00658-5.
doi: 10.1038/s41392-021-00658-5 |
[7] |
Mishra D, Banerjee D. Lactate dehydrogenases as metabolic links between tumor and stroma in the tumor microenvironment[J]. Cancers (Basel), 2019, 11(6):750. DOI: 10.3390/cancers11060750.
doi: 10.3390/cancers11060750 |
[8] |
Deng T, Zhang J, Meng Y, et al. Higher pretreatment lactate dehydrogenase concentration predicts worse overall survival in patients with lung cancer[J]. Medicine (Baltimore), 2018, 97(38):e12524. DOI: 10.1097/MD.0000000000012524.
doi: 10.1097/MD.0000000000012524 |
[9] |
Lahoud RM, O'Shea A, El-Mouhayyar C, et al. Tumour markers and their utility in imaging of abdominal and pelvic malignancies[J]. Clin Radiol, 2021, 76(2):99-107. DOI: 10.1016/j.crad.2020.07.033.
doi: 10.1016/j.crad.2020.07.033 pmid: 32861463 |
[10] |
Zhang Z, Li Y, Yan X, et al. Pretreatment lactate dehydrogenase may predict outcome of advanced non small-cell lung cancer patients treated with immune checkpoint inhibitors: a meta-analysis[J]. Cancer Med, 2019, 8(4):1467-1473. DOI: 10.1002/cam4.2024.
doi: 10.1002/cam4.2024 |
[11] |
Michels N, van Aart C, Morisse J, et al. Chronic inflammation towards cancer incidence: a systematic review and meta-analysis of epidemiological studies[J]. Crit Rev Oncol Hematol, 2021, 157:103177. DOI: 10.1016/j.critrevonc.2020.103177.
doi: 10.1016/j.critrevonc.2020.103177 |
[12] |
Iivanainen S, Ahvonen J, Knuuttila A, et al. Elevated CRP levels indicate poor progression-free and overall survival on cancer patients treated with PD-1 inhibitors[J]. ESMO Open, 2019, 4(4):e000531. DOI: 10.1136/esmoopen-2019-000531.
doi: 10.1136/esmoopen-2019-000531 |
[13] |
Riedl JM, Barth DA, Brueckl WM, et al. C-reactive protein (CRP) levels in immune checkpoint inhibitor response and progression in advanced non-small cell lung cancer: a bi-center study[J]. Cancers (Basel), 2020, 12(8):2319. DOI: 10.3390/cancers12082319.
doi: 10.3390/cancers12082319 |
[14] |
Patil NS, Zou W, Mocci S, et al. C-reactive protein reduction post treatment is associated with improved survival in atezolizumab (anti-PD-L1) treated non-small cell lung cancer patients[J]. PLoS One, 2021, 16(2):e0246486. DOI: 10.1371/journal.pone.0246486.
doi: 10.1371/journal.pone.0246486 |
[15] |
Katayama Y, Yamada T, Chihara Y, et al. Significance of inflammatory indexes in atezolizumab monotherapy outcomes in previously treated non-small-cell lung cancer patients[J]. Sci Rep, 2020, 10(1):17495. DOI: 10.1038/s41598-020-74573-0.
doi: 10.1038/s41598-020-74573-0 pmid: 33060826 |
[16] |
Lee PY, Oen KQX, Lim GRS, et al. Neutrophil-to-lymphocyte ratio predicts development of immune-related adverse events and outcomes from immune checkpoint blockade: a case-control study[J]. Cancers (Basel), 2021, 13(6):1308. DOI: 10.3390/cancers13061308.
doi: 10.3390/cancers13061308 |
[17] |
Li Y, Zhang Z, Hu Y, et al. Pretreatment neutrophil-to-lymphocyte ratio (NLR) may predict the outcomes of advanced non-small-cell lung cancer (NSCLC) patients treated with immune checkpoint inhibitors (ICIs)[J]. Front Oncol, 2020, 10:654. DOI: 10.3389/fonc.2020.00654.
doi: 10.3389/fonc.2020.00654 |
[18] |
Russo A, Franchina T, Ricciardi GRR, et al. Baseline neutrophi-lia, derived neutrophil-to-lymphocyte ratio (dNLR), platelet-to-lymphocyte ratio (PLR), and outcome in non small cell lung cancer (NSCLC) treated with nivolumab or docetaxel[J]. J Cell Physiol, 2018, 233(10):6337-6343. DOI: 10.1002/jcp.26609.
doi: 10.1002/jcp.26609 |
[19] |
Mezquita L, Preeshagul I, Auclin E, et al. Predicting immunothe-rapy outcomes under therapy in patients with advanced NSCLC using dNLR and its early dynamics[J]. Eur J Cancer, 2021, 151:211-220. DOI: 10.1016/j.ejca.2021.03.011.
doi: 10.1016/j.ejca.2021.03.011 pmid: 34022698 |
[20] |
Pavan A, Calvetti L, Dal Maso A, et al. Peripheral blood markers identify risk of immune-related toxicity in advanced non-small cell lung cancer treated with immune-checkpoint inhibitors[J]. Oncologist, 2019, 24(8):1128-1136. DOI: 10.1634/theoncologist.2018-0563.
doi: 10.1634/theoncologist.2018-0563 |
[21] |
Ravindranathan D, Master VA, Bilen MA. Inflammatory markers in cancer immunotherapy[J]. Biology (Basel), 2021, 10(4):325. DOI: 10.3390/biology10040325.
doi: 10.3390/biology10040325 |
[22] |
Egami S, Kawazoe H, Hashimoto H, et al. Peripheral blood biomarkers predict immune-related adverse events in non-small cell lung cancer patients treated with pembrolizumab: a multicenter retrospective study[J]. J Cancer, 2021, 12(7):2105-2112. DOI: 10.7150/jca.53242.
doi: 10.7150/jca.53242 |
[23] |
Bilen MA, Martini DJ, Liu Y, et al. The prognostic and predictive impact of inflammatory biomarkers in patients who have advanced-stage cancer treated with immunotherapy[J]. Cancer, 2019, 125(1):127-134. DOI: 10.1002/cncr.31778.
doi: 10.1002/cncr.31778 |
[24] |
Qi Y, Liao D, Fu X, et al. Elevated platelet-to-lymphocyte corresponds with poor outcome in patients with advanced cancer receiving anti-PD-1 therapy[J]. Int Immunopharmacol, 2019, 74:105707. DOI: 10.1016/j.intimp.2019.105707.
doi: 10.1016/j.intimp.2019.105707 |
[25] |
Xu H, He A, Liu A, et al. Evaluation of the prognostic role of platelet-lymphocyte ratio in cancer patients treated with immune checkpoint inhibitors: a systematic review and meta-analysis[J]. Int Immunopharmacol, 2019, 77:105957. DOI: 10.1016/j.intimp.2019.105957.
doi: 10.1016/j.intimp.2019.105957 |
[26] |
Kartolo A, Holstead R, Khalid S, et al. Serum neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio in prognosticating immunotherapy efficacy[J]. Immunotherapy, 2020, 12(11):785-798. DOI: 10.2217/imt-2020-0105.
doi: 10.2217/imt-2020-0105 pmid: 32657234 |
[27] |
Benitez JC, Recondo G, Rassy E, et al. The LIPI score and inflammatory biomarkers for selection of patients with solid tumors treated with checkpoint inhibitors[J]. Q J Nucl Med Mol Imaging, 2020, 64(2):162-174. DOI: 10.23736/S1824-4785.20.03250-1.
doi: 10.23736/S1824-4785.20.03250-1 pmid: 32107903 |
[28] |
Ruiz-Bañobre J, Areses-Manrique MC, Mosquera-Martínez J, et al. Evaluation of the lung immune prognostic index in advanced non-small cell lung cancer patients under nivolumab monotherapy[J]. Transl Lung Cancer Res, 2019, 8(6):1078-1085. DOI: 10.21037/tlcr.2019.11.07.
doi: 10.21037/tlcr.2019.11.07 |
[29] |
Sorich MJ, Rowland A, Karapetis CS, et al. Evaluation of the lung immune prognostic index for prediction of survival and response in patients treated with atezolizumab for NSCLC: pooled analysis of clinical trials[J]. J Thorac Oncol, 2019, 14(8):1440-1446. DOI: 10.1016/j.jtho.2019.04.006.
doi: 10.1016/j.jtho.2019.04.006 |
[30] |
Minami S, Ihara S, Komuta K. Pretreatment lung immune prognostic index is a prognostic marker of chemotherapy and epidermal growth factor receptor tyrosine kinase inhibitor[J]. World J Oncol, 2019, 10(1):35-45. DOI: 10.14740/wjon1179.
doi: 10.14740/wjon1179 pmid: 30834050 |
[31] |
Petrella F, Radice D, Casiraghi M, et al. Glasgow prognostic score class 2 predicts prolonged intensive care unit stay in patients undergoing pneumonectomy[J]. Ann Thorac Surg, 2016, 102(6):1898-1904. DOI: 10.1016/j.athoracsur.2016.05.111.
doi: 10.1016/j.athoracsur.2016.05.111 |
[32] |
Ni XF, Wu J, Ji M, et al. Effect of C-reactive protein/albumin ratio on prognosis in advanced non-small-cell lung cancer[J]. Asia Pac J Clin Oncol, 2018, 14(6):402-409. DOI: 10.1111/ajco.13055.
doi: 10.1111/ajco.13055 |
[33] |
Matsubara T, Takamori S, Haratake N, et al. The impact of immune-inflammation-nutritional parameters on the prognosis of non-small cell lung cancer patients treated with atezolizumab[J]. J Thorac Dis, 2020, 12(4):1520-1528. DOI: 10.21037/jtd.2020.02.27.
doi: 10.21037/jtd.2020.02.27 pmid: 32395289 |
[1] | Yang Mi, Bie Jun, Zhang Jiayong, Deng Jiaxiu, Tang Zuge, Lu Jun. Analysis of the efficacy and prognosis of neoadjuvant therapy for locally advanced resectable esophageal cancer [J]. Journal of International Oncology, 2024, 51(6): 332-337. |
[2] | Xu Fenglin, Wu Gang. Research progress of EBV in tumor immune microenvironment and immunotherapy of nasopharyngeal carcinoma [J]. Journal of International Oncology, 2024, 51(6): 359-363. |
[3] | Gao Fan, Wang Ping, Du Chao, Chu Yanliu. Research progress on intestinal flora and non-surgical treatment of the colorectal cancer [J]. Journal of International Oncology, 2024, 51(6): 376-381. |
[4] | Fan Zhipeng, Yu Jing, Hu Jing, Liao Zhengkai, Xu Yu, Ouyang Wen, Xie Conghua. Predictive value of changes in inflammatory markers for prognosis in patients with advanced non-small cell lung cancer treated with the first-line immunotherapy plus chemotherapy [J]. Journal of International Oncology, 2024, 51(5): 257-266. |
[5] | Yang Hao, Shi Guidong, Zhang Chengcheng, Zhang Yue, Zhang Liwen, Fu Maoyong. Comparison of efficacy and safety between sintilimab and tislelizumab in neoadjuvant therapy for advanced esophageal squamous cell carcinoma [J]. Journal of International Oncology, 2024, 51(4): 210-216. |
[6] | Sa Qiang, Xu Hangcheng, Wang Jiayu. Advances in immunotherapy for breast cancer [J]. Journal of International Oncology, 2024, 51(4): 227-234. |
[7] | Sun Weiwei, Yao Xuemin, Wang Pengjian, Wang Jing, Jia Jinghao. Exploration of prognostic factors and nomogram construction for advanced non-small cell lung cancer treated with immunotherapy based on hematologic indexes [J]. Journal of International Oncology, 2024, 51(3): 143-150. |
[8] | Liu Yulan, Jing Haiyan, Sun Jing, Song Wei, Sha Dan. Advances in predicting efficacy and prognostic markers of immunotherapy for gastric cancer [J]. Journal of International Oncology, 2024, 51(3): 175-180. |
[9] | Cui Tenglu, Lyu lu, Sun Pengfei. Application of radiotherapy combined with immunotherapy in the treatment of head and neck squamous cell carcinoma [J]. Journal of International Oncology, 2023, 50(9): 548-552. |
[10] | Guo Ciliang, Jiang Chunping, Wu Junhua. Gut microbiome and tumor immunotherapy [J]. Journal of International Oncology, 2023, 50(7): 432-436. |
[11] | Li Qingshan, Xie Xin, Zhang Nan, Liu Shuai. Research progress on the application of combining radiotherapy and systemic therapy in breast cancer [J]. Journal of International Oncology, 2023, 50(6): 362-367. |
[12] | Lyu Lu, Sun Pengfei. Gut flora and cervical cancer [J]. Journal of International Oncology, 2023, 50(6): 373-376. |
[13] | Gu Anqin, Long Jinhua, Jin Feng. Clinical research progress of immunotherapy for nasopharyngeal carcinoma [J]. Journal of International Oncology, 2023, 50(5): 299-303. |
[14] | Ding Hao, Ying Jintao, Fu Maoyong. Research progress of CAR-T in the treatment of esophageal squamous cell carcinoma [J]. Journal of International Oncology, 2023, 50(4): 231-235. |
[15] | Ma Pengcheng, Chen Yu. Research progress of primary pulmonary lymphoepithelioma-like carcinoma [J]. Journal of International Oncology, 2023, 50(3): 174-178. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||