Journal of International Oncology ›› 2020, Vol. 47 ›› Issue (6): 372-376.doi: 10.3760/cma.j.cn371439-20191206-00039
• Review • Previous Articles Next Articles
Xu Yiyue, Zhao Shaorong, Liu Jingjing, Zhang Jin()
Received:
2019-12-06
Revised:
2019-12-19
Online:
2020-06-08
Published:
2020-07-22
Contact:
Zhang Jin
E-mail:zhangjintjmuch1@163.com
Supported by:
Xu Yiyue, Zhao Shaorong, Liu Jingjing, Zhang Jin. Mechanisms of ferroptosis and its significance in breast cancer therapy[J]. Journal of International Oncology, 2020, 47(6): 372-376.
[1] |
Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012,149(5):1060-1072. DOI: 10.1016/j.cell.2012.03.042.
doi: 10.1016/j.cell.2012.03.042 |
[2] |
Arosio P, Elia L, Poli M. Ferritin, cellular iron storage and regulation[J]. IUBMB Life, 2017,69(6):414-422. DOI: 10.1002/iub.1621.
doi: 10.1002/iub.1621 pmid: 28349628 |
[3] |
Toyokuni S, Ito F, Yamashita K, et al. Iron and thiol redox signaling in cancer: an exquisite balance to escape ferroptosis[J]. Free Radic Biol Med, 2017,108:610-626. DOI: 10.1016/j.freeradbiomed.2017.04.024.
doi: 10.1016/j.freeradbiomed.2017.04.024 pmid: 28433662 |
[4] |
Lim JKM, Delaidelli A, Minaker SW, et al. Cystine/glutamate antiporter xCT (SLC7A11) facilitates oncogenic RAS transformation by preserving intracellular redox balance[J]. Proc Natl Acad Sci U S A, 2019,116(19):9433-9442. DOI: 10.1073/pnas.1821323116.
doi: 10.1073/pnas.1821323116 pmid: 31000598 |
[5] |
Xu T, Ding W, Ji X, et al. Molecular mechanisms of ferroptosis and its role in cancer therapy[J]. J Cell Mol Med, 2019,23(8):4900-4912. DOI: 10.1111/jcmm.14511.
doi: 10.1111/jcmm.14511 pmid: 31232522 |
[6] |
Gao M, Yi J, Zhu J, et al. Role of mitochondria in ferroptosis[J]. Mol Cell, 2019,73(2):354-363.e3.DOI: 10.1016/j.molcel.2018.10.042.
doi: 10.1016/j.molcel.2018.10.042 pmid: 30581146 |
[7] |
Zhang K, Wu L, Zhang P, et al. miR-9 regulates ferroptosis by targeting glutamic-oxaloacetic transaminase GOT1 in melanoma[J]. Mol Carcinog, 2018,57(11):1566-1576. DOI: 10.1002/mc.22878.
doi: 10.1002/mc.22878 pmid: 30035324 |
[8] |
Luo M, Wu L, Zhang K, et al. miR-137 regulates ferroptosis by targeting glutamine transporter SLC1A5 in melanoma[J]. Cell Death Differ, 2018,25(8):1457-1472. DOI: 10.1038/s41418-017-0053-8.
doi: 10.1038/s41418-017-0053-8 pmid: 29348676 |
[9] |
Maiorino M, Conrad M, Ursini F. GPx4, lipid peroxidation, and cell death: discoveries, rediscoveries, and open issues[J]. Antioxid Redox Signal, 2018,29(1):61-74. DOI: 10.1089/ars.2017.7115.
doi: 10.1089/ars.2017.7115 pmid: 28462584 |
[10] |
Seibt TM, Proneth B, Conrad M. Role of GPX4 in ferroptosis and its pharmacological implication[J]. Free Radic Biol Med, 2019,133:144-152. DOI: 10.1016/j.freeradbiomed.2018.09.014.
doi: 10.1016/j.freeradbiomed.2018.09.014 pmid: 30219704 |
[11] |
Sui X, Zhang R, Liu S, et al. RSL3 drives ferroptosis through GPX4 inactivation and ROS production in colorectal cancer[J]. Front Pharmacol, 2018,9:1371. DOI: 10.3389/fphar.2018.01371.
doi: 10.3389/fphar.2018.01371 pmid: 30524291 |
[12] |
Imai H, Matsuoka M, Kumagai T, et al. Lipid peroxidation-dependent cell death regulated by GPx4 and rerroptosis[J]. Curr Top Microbiol Immunol, 2017,403:143-170. DOI: 10.1007/82_2016_508.
doi: 10.1007/82_2016_508 pmid: 28204974 |
[13] |
Fan Z, Wirth AK, Chen D, et al. Nrf2-Keap1 pathway promotes cell proliferation and diminishes ferroptosis[J]. Oncogenesis, 2017,6(8):e371. DOI: 10.1038/oncsis.2017.65.
doi: 10.1038/oncsis.2017.65 pmid: 28805788 |
[14] | Zimta AA, Cenariu D, Irimie A, et al. The role of Nrf2 activity in cancer development and progression[J]. Cancers (Basel), 2019,11(11). E1755. DOI: 10.3390/cancers11111755. |
[15] |
Horniblow RD, Bedford M, Hollingworth R, et al. BRAF mutations are associated with increased iron regulatory protein-2 expression in colorectal tumorigenesis[J]. Cancer Sci, 2017,108(6):1135-1143. DOI: 10.1111/cas.13234.
doi: 10.1111/cas.13234 pmid: 28281325 |
[16] |
Guo J, Xu B, Han Q, et al. Ferroptosis: a novel anti-tumor action for cisplatin[J]. Cancer Res Treat, 2018,50(2):445-460. DOI: 10.4143/crt.2016.572.
doi: 10.4143/crt.2016.572 pmid: 28494534 |
[17] |
Lin X, Liao J, Yang Z, et al. Inhibition of cisplatin-resistant head and neck squamous cell carcinoma by combination of Afatinib with PD0325901, a MEK inhibitor[J]. Am J Cancer Res, 2019,9(6):1282-1292.
pmid: 31285959 |
[18] |
Ruiu R, Rolih V, Bolli E, et al. Fighting breast cancer stem cells through the immune-targeting of the xCT cystine-glutamate antiporter[J]. Cancer Immunol Immunother, 2019,68(1):131-141. DOI: 10.1007/s00262-018-2185-1.
doi: 10.1007/s00262-018-2185-1 pmid: 29947961 |
[19] |
Masaldan S, Clatworthy SAS, Gamell C, et al. Iron accumulation in senescent cells is coupled with impaired ferritinophagy and inhibition of ferroptosis[J]. Redox Biol, 2018,14:100-115. DOI: 10.1016/j.redox. 2017.08.015.
doi: 10.1016/j.redox.2017.08.015 pmid: 28888202 |
[20] |
Hao S, Yu J, He W, et al. Cysteine dioxygenase 1 mediates erastin-induced ferroptosis in human gastric cancer cells[J]. Neoplasia, 2017,19(12):1022-1032. DOI: 10.1016/j.neo.2017.10.005.
doi: 10.1016/j.neo.2017.10.005 pmid: 29144989 |
[21] |
Gai C, Yu M, Li Z, et al. Acetaminophen sensitizing erastin-induced ferroptosis via modulation of Nrf2/heme oxygenase-1 signaling pathway in non-small-cell lung cancer[J]. J Cell Physiol, 2020,235(4):3329-3339. DOI: 10.1002/jcp.29221.
doi: 10.1002/jcp.29221 pmid: 31541463 |
[22] |
Timmerman LA, Holton T, Yuneva M, et al. Glutamine sensitivity analysis identifies the xCT antiporter as a common triple-negative breast tumor therapeutic target[J]. Cancer Cell, 2013,24(4):450-465. DOI: 10.1016/j.ccr.2013.08.020.
doi: 10.1016/j.ccr.2013.08.020 |
[23] |
Geng N, Shi BJ, Li SL, et al. Knockdown of ferroportin accelerates erastin-induced ferroptosis in neuroblastoma cells[J]. Eur Rev Med Pharmacol Sci, 2018,22(12):3826-3836. DOI: 10.26355/eurrev_201806_15267.
doi: 10.26355/eurrev_201806_15267 pmid: 29949159 |
[24] |
Yu M, Gai C, Li Z, et al. Targeted exosome-encapsulated erastin induced ferroptosis in triple negative breast cancer cells[J]. Cancer Sci, 2019,110(10):3173-3182. DOI: 10.1111/cas.14181.
doi: 10.1111/cas.14181 pmid: 31464035 |
[25] |
Yu H, Yang C, Jian L, et al. Sulfasalazine-induced ferroptosis in breast cancer cells is reduced by the inhibitory effect of estrogen receptor on the transferrin receptor[J]. Oncol Rep, 2019,42(2):826-838. DOI: 10.3892/or.2019.7189.
doi: 10.3892/or.2019.7189 pmid: 31173262 |
[26] |
Ma S, Henson ES, Chen Y, et al. Ferroptosis is induced following siramesine and lapatinib treatment of breast cancer cells[J]. Cell Death Dis, 2016,7:e2307. DOI: 10.1038/cddis.2016.208.
doi: 10.1038/cddis.2016.208 pmid: 27441659 |
[27] |
Ma S, Dielschneider RF, Henson ES, et al. Ferroptosis and autophagy induced cell death occur independently after siramesine and lapatinib treatment in breast cancer cells[J]. PLoS One, 2017,12(8):e0182921. DOI: 10.1371/journal.pone.0182921.
doi: 10.1371/journal.pone.0182921 pmid: 28827805 |
[28] |
Nagpal A, Redvers RP, Ling X, et al. Neoadjuvant neratinib promotes ferroptosis and inhibits brain metastasis in a novel syngeneic model of spontaneous HER2+ve breast cancer metastasis[J]. Breast Cancer Res, 2019,21(1):94. DOI: 10.1186/s13058-019-1177-1.
doi: 10.1186/s13058-019-1177-1 pmid: 31409375 |
[29] |
Mbaveng AT, Bitchagno GTM, Kuete V, et al. Cytotoxicity of ungeremine towards multi-factorial drug resistant cancer cells and induction of apoptosis, ferroptosis, necroptosis and autophagy[J]. Phytomedicine, 2019,60:152832. DOI: 10.1016/j.phymed.2019.152832.
doi: 10.1016/j.phymed.2019.152832 pmid: 31031043 |
[30] |
Shan Z, Wei Z, Shaikh ZA. Suppression of ferroportin expression by cadmium stimulates proliferation, EMT, and migration in triple-negative breast cancer cells[J]. Toxicol Appl Pharmacol, 2018,356:36-43. DOI: 10.1016/j.taap.2018.07.017.
doi: 10.1016/j.taap.2018.07.017 pmid: 30030096 |
[31] |
Pizzamiglio S, De Bortoli M, Taverna E, et al. Expression of iron-related proteins differentiate non-cancerous and cancerous breast tumors[J]. Int J Mol Sci, 2017, 18(2). pii: E410. DOI: 10.3390/ijms18020410.
doi: 10.3390/ijms18020444 pmid: 28230770 |
[32] |
Park E, Chung SW. ROS-mediated autophagy increases intracellular iron levels and ferroptosis by ferritin and transferrin receptor regulation[J]. Cell Death Dis, 2019,10(11):822. DOI: 10.1038/s41419-019-2064-5.
doi: 10.1038/s41419-019-2064-5 pmid: 31659150 |
[33] |
Tang M, Chen Z, Wu D, et al. Ferritinophagy/ferroptosis: iron-related newcomers in human diseases[J]. J Cell Physiol, 2018,233(12):9179-9190. DOI: 10.1002/jcp.26954.
doi: 10.1002/jcp.26954 pmid: 30076709 |
[34] |
Gryzik M, Srivastava A, Longhi G, et al. Expression and characterization of the ferritin binding domain of nuclear receptor coactivator-4 (NCOA4)[J]. Biochim Biophys Acta Gen Subj, 2017,1861(11 Pt A):2710-2716. DOI: 10.1016/j.bbagen.2017.07.015.
doi: 10.1016/j.bbagen.2017.07.015 pmid: 28754384 |
[35] |
Zhang Z, Yao Z, Wang L, et al. Activation of ferritinophagy is required for the RNA-binding protein ELAVL1/HuR to regulate ferroptosis in hepatic stellate cells[J]. Autophagy, 2018,14(12):2083-2103. DOI: 10.1080/15548627.2018.503146.
doi: 10.1080/15548627.2018.1503146 pmid: 30081711 |
[36] |
Yang WS, Kim KJ, Gaschler MM, et al. Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis[J]. Proc Natl Acad Sci U S A, 2016,113(34):e4966-e4975. DOI: 10.1073/pnas.1603244113.
doi: 10.1073/pnas.1603244113 pmid: 27506793 |
[37] |
Jarc E, Kump A, Malavasic P, et al. Lipid droplets induced by secreted phospholipase A2 and unsaturated fatty acids protect breast cancer cells from nutrient and lipotoxic stress[J]. Biochim Biophys Acta Mol Cell Biol Lipids, 2018,1863(3):247-265. DOI: 10.1016/j.bbalip.2017.12.006.
doi: 10.1016/j.bbalip.2017.12.006 pmid: 29229414 |
[38] |
Kuwata H, Nakatani E, Shimbara-Matsubayashi S, et al. Long-chain acyl-CoA synthetase 4 participates in the formation of highly unsaturated fatty acid-containing phospholipids in murine macrophages[J]. Biochim Biophys Acta Mol Cell Biol Lipids, 2019,1864(11):1606-1618. DOI: 10.1016/j.bbalip.2019.07.013.
doi: 10.1016/j.bbalip.2019.07.013 pmid: 31376475 |
[39] |
Jalil A, Bourgeois T, Ménégaut L, et al. Revisiting the role of LXRs in PUFA metabolism and phospholipid homeostasis[J]. Int J Mol Sci, 2019, (15). pii: E3787. DOI: 10.3390/ijms20153787.
doi: 10.3390/ijms20153824 pmid: 31387280 |
[40] |
Doll S, Proneth B, Tyurina YY, et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition[J]. Nat Chem Biol, 2017,13(1):91-98. DOI: 10.1038/nchembio.2239.
doi: 10.1038/nchembio.2239 pmid: 27842070 |
[41] |
Wu X, Zhi F, Lun W, et al. Baicalin inhibits PDGF-BB-induced hepatic stellate cell proliferation, apoptosis, invasion, migration and activation via the miR-3595/ACSL4 axis[J]. Int J Mol Med, 2018,41(4):1992-2002. DOI: 10.3892/ijmm.2018.3427.
doi: 10.3892/ijmm.2018.3427 pmid: 29393361 |
[42] |
Park S, Oh J, Kim M, et al. Bromelain effectively suppresses Kras-mutant colorectal cancer by stimulating ferroptosis[J]. Anim Cells Syst (Seoul), 2018,22(5):334-340. DOI: 10.1080/19768354.2018.1512521.
doi: 10.1080/19768354.2018.1512521 |
[43] |
Magtanong L, Ko PJ, To M, et al. Exogenous monounsaturated fatty acids promote a ferroptosis-resistant cell state[J]. Cell Chem Biol, 2019,26(3):420-432, e9. DOI: 10.1016/j.chembiol.2018.11.016.
doi: 10.1016/j.chembiol.2018.11.016 pmid: 30686757 |
[44] |
Xie Y, Zhu S, Song X, et al. The tumor suppressor p53 limits ferroptosis by blocking DPP4 activity[J]. Cell Rep, 2017,20(7):1692-1704. DOI: 10.1016/j.celrep.2017.07.055.
doi: 10.1016/j.celrep.2017.07.055 pmid: 28813679 |
[45] |
Kaiser AM, Attardi LD. Deconstructing networks of p53-mediated tumor suppression in vivo[J]. Cell Death Differ, 2018,25(1):93-103. DOI: 10.1038/cdd.2017.171.
doi: 10.1038/cdd.2017.171 pmid: 29099489 |
[46] |
Liu DS, Duong CP, Haupt S, et al. Inhibiting the system xC(-)/glutathione axis selectively targets cancers with mutant-p53 accumulation[J]. Nat Commun, 2017,8:14844. DOI: 10.1038/ncomms14844.
doi: 10.1038/ncomms14844 pmid: 28348409 |
[47] |
Tarangelo A, Magtanong L, Bieging-Rolett KT, et al. P53 suppresses metabolic stress-induced ferroptosis in cancer cells[J]. Cell Rep, 2018,22(3):569-575. DOI: 10.1016/j.celrep.2017.12.077.
doi: 10.1016/j.celrep.2017.12.077 pmid: 29346757 |
[48] |
Aubrey BJ, Kelly GL, Janic A, et al. How does p53 induce apoptosis and how does this relate to p53-mediated tumour suppression?[J]. Cell Death Differ, 2018,25(1):104-113. DOI: 10.1038/cdd.2017.169.
doi: 10.1038/cdd.2017.169 pmid: 29149101 |
[49] |
Mao C, Wang X, Liu Y, et al. A G3BP1-interacting lncRNA promotes ferroptosis and apoptosis in cancer via nuclear sequestration of p53[J]. Cancer Res, 2018,78(13):3484-3496. DOI: 10.1158/0008-5472.CAN-17-3454.
doi: 10.1158/0008-5472.CAN-17-3454 pmid: 29588351 |
[50] |
Kawano Y, Iwama E, Tsuchihashi K, et al. CD44 variant-dependent regulation of redox balance in EGFR mutation-positive non-small cell lung cancer: a target for treatment[J]. Lung Cancer, 2017,113:72-78. DOI: 10.1016/j.lungcan.2017.09.008.
doi: 10.1016/j.lungcan.2017.09.008 pmid: 29110853 |
[51] |
Xiong H, Wang C, Wang Z, et al. Intracellular cascade activated nanosystem for improving ER+ breast cancer therapy through attacking GSH-mediated metabolic vulnerability[J]. J Control Release, 2019,309:145-157. DOI: 10.1016/j.jconrel.2019.07.029.
doi: 10.1016/j.jconrel.2019.07.029 pmid: 31348976 |
[1] | Wang Ying, Liu Nan, Guo Bing. Advances of antibody-drug conjugate in the therapy of metastatic breast cancer [J]. Journal of International Oncology, 2024, 51(6): 364-369. |
[2] | Wang Peixin, Zhao Jun, Xu Shihong, Jiang Zhaoyang, Wang Xiaoqiang, Yang Hongjuan. Progress of ferroptosis-related mechanisms in osteosarcoma [J]. Journal of International Oncology, 2024, 51(5): 308-311. |
[3] | Sa Qiang, Xu Hangcheng, Wang Jiayu. Advances in immunotherapy for breast cancer [J]. Journal of International Oncology, 2024, 51(4): 227-234. |
[4] | Yang Zhi, Lu Yiqiao, Gu Huayan, Ding Jialing, Guo Guilong. Research progress of tumor microenvironment mediated drug resistance in targeted therapy of breast cancer [J]. Journal of International Oncology, 2024, 51(4): 235-238. |
[5] | Wang Zihao, Wang Yu, Yang Xin, He Yi, Mo Xingkui, Yuan Tao. Research progress on the molecular mechanism and related treatments of ferroptosis in osteosarcoma [J]. Journal of International Oncology, 2024, 51(4): 239-244. |
[6] | Chen Boguang, Wang Sugui, Zhang Yongjie. Role of serum cholinesterase and inflammatory markers in the prognosis of stage ⅠA -ⅢA breast cancer [J]. Journal of International Oncology, 2024, 51(2): 73-82. |
[7] | Gu Huayan, Zhu Teng, Guo Guilong. Breast microbiota and breast cancer: present and future [J]. Journal of International Oncology, 2024, 51(1): 55-58. |
[8] | Wang Jing, Xu Wenting. Value of NLR, CEA combined with coagulation indicators in the differential diagnosis of benign and malignant breast nodules with a diameter ≤ 1.0 cm [J]. Journal of International Oncology, 2023, 50(9): 520-526. |
[9] | Feng Chengtian, Huang Furong, Cao Shiyu, Wang Jianyu, Nanding Abiyasi, Jiang Yongdong, Zhu Juanying. Relationships between HER2 protein expression and imaging features in HER2 positive breast cancer patients [J]. Journal of International Oncology, 2023, 50(9): 527-531. |
[10] | Feng Dongxu, Wu Wei, Gao Pingfa, Wang Jun, Shi Lijuan, Chen Dawei, Li Wenbing, Zhang Meifeng. Effects of miR-451 on glycolysis and apoptosis of breast cancer cells by regulating Rho/ROCK1 pathway [J]. Journal of International Oncology, 2023, 50(8): 449-456. |
[11] | Pan Shulan, Liu Chang, He Ping. Effect of fritinib on angiogenesis, tumor growth and IRE1-ASK1-JNK pathway in triple negative breast cancer [J]. Journal of International Oncology, 2023, 50(8): 457-462. |
[12] | Wang Wende, Zeng De. Research progress on the mechanism of endocrine therapy resistance for breast cancer [J]. Journal of International Oncology, 2023, 50(6): 352-356. |
[13] | Li Qingshan, Xie Xin, Zhang Nan, Liu Shuai. Research progress on the application of combining radiotherapy and systemic therapy in breast cancer [J]. Journal of International Oncology, 2023, 50(6): 362-367. |
[14] | Zhu Jun, Huang Meijin, Li Yuan, Liu Zegang, Xun Xin, Chen Hong. Research progress on targeted therapy of breast cancer with low expression of HER2 [J]. Journal of International Oncology, 2023, 50(4): 236-240. |
[15] | Zhou Ting, Xu Shaohua, Mei Lin. Efficacy and safety of bevacizumab combined with capecitabine in the treatment of advanced breast cancer [J]. Journal of International Oncology, 2023, 50(3): 144-149. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||